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Abstract

We consider in this paper a model parabolic variational inequality. This problem is discretized with conforming Lagrange
finite elements of order p ≥ 1 in space and with the backward Euler scheme in time. The nonlinearity coming from the
complementarity constraints is treated with any semismooth Newton algorithm and we take into account in our analysis an
arbitrary iterative algebraic solver. In the case p = 1, when the system of nonlinear algebraic equations is solved exactly, we
derive an a posteriori error estimate on both the energy error norm and a norm approximating the time derivative error. When
p ≥ 1, we provide a fully computable and guaranteed a posteriori estimate in the energy error norm which is valid at each
step of the linearization and algebraic solvers. Our estimate, based on equilibrated flux reconstructions, also distinguishes the
discretization, linearization, and algebraic error components. We build an adaptive inexact semismooth Newton algorithm based
on stopping the iterations of both solvers when the estimators of the corresponding error components do not affect significantly
the overall estimate. Numerical experiments are performed with the semismooth Newton-min algorithm and the semismooth
Newton–Fischer–Burmeister algorithm in combination with the GMRES iterative algebraic solver to illustrate the strengths of
our approach.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Let Ω ⊂ R2 be a polygonal domain and let T > 0 denote a final simulation time. Let H 1(Ω ) be the
space of L2 functions on the domain Ω which admit a weak gradient in [L2(Ω )]2 and H 1

0 (Ω ) its zero-trace
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subspace. Consider the affine space H 1
g (Ω ) :=

{
v ∈ H 1(Ω ), v = g on ∂Ω

}
, where g is a positive constant, and

denote the dual space of H 1
0 (Ω ) by H−1(Ω ), with the duality pairing ⟨·, ·⟩. Consider a bilinear continuous form

a(·, ·) :
[
H 1(Ω )

]2
×
[
H 1(Ω )

]2
→ R, coercive on

[
H 1

0 (Ω )
]2. Let Kg be a nonempty closed convex subset of

H 1
g (Ω ) × H 1

0 (Ω ) and let Kt
g be its evolutive-in-time version

Kt
g :=

{
v ∈ L2(0, T ; H 1

g (Ω ))×L2(0, T ; H 1
0 (Ω )), v(t)∈Kg a.e. in ]0, T [

}
. (1.1)

We consider the following parabolic variational inequality: for the data f := ( f1, f2) ∈
[
L2(0, T ; L2(Ω ))

]2 and
the initial condition u0

= (u0
1, u0

2) ∈ Kg , find u = (u1, u2) ∈ Kt
g such that ∂t u ∈

[
L2(0, T ; H−1(Ω ))

]2 and such
that for all v ∈ Kt

g∫ T

0
⟨∂t u, v − u⟩(t) dt +

∫ T

0
a(u, v − u)(t) dt ≥

∫ T

0
( f , v − u)Ω (t) dt,

u(0) = u0.

(1.2)

Problem (1.2) belongs to the wide class of parabolic variational inequalities of the first kind, see Glowinski [1]
and Lions [2] for a general introduction. These have attracted a recent interest in a wide variety of applications; we
mention the obstacle problems in mechanics [2–4], the problems in modeling pricing of American options [5,6],
the Stefan problem [7], the CO2 sequestration process [8], the mould filling [9], and the underground storage of
radioactive waste [10]. Though the existence and uniqueness of a weak solution u ∈ Kt

g for (1.2) is classical, see [2]
and the references therein, the numerical analysis of parabolic variational inequalities is very challenging.

A numerical discretization of problem (1.2) gives rise at each time step n to a system of algebraic variational
inequalities. This can be written as a system of linear equalities and complementarity constrains of the form

Sn(Xn
h) = 0,

Fn(Xn
h) ≥ 0, Gn(Xn

h) ≥ 0, Fn(Xn
h) · Gn(Xn

h) = 0,
(1.3)

where Sn , Fn , and Gn are affine operators and Xn
h ∈ Rm , m ≥ 1, is the unknown vector of degrees of freedom.

Among the spectrum of methods for their solution, let us mention the interior point method [11], the active set
strategy [12], and the primal–dual active set strategy together with the family of semismooth Newton methods,
see [13–20] and the references therein.

The principle of any semismooth Newton linearization method is to approximate the solution of the nonlinear
system (1.3) by an iterative procedure requesting to solve on each step a system of linear algebraic equations. The
term “semismooth” describes here the particularity of this Newton linearization, which has to be able to cope with
the fact that the system (1.3) is not differentiable everywhere, because of the algebraic inequalities in the constraints.
More precisely, from an initial guess Xn,0

h ∈ Rm , a semismooth Newton linearization requires to solve at each step
k ≥ 1 the system of linear algebraic equations

An,k−1 Xn,k
h = Fn,k−1, (1.4)

where the matrix An,k−1
∈ Rm,m and the vector Fn,k−1

∈ Rm are constructed from Xn,k−1
h ∈ Rm .

Solving (1.4) with a direct method may be very expensive. A popular approach to speed up the computation
is to employ an inexact algebraic solver. At each iterative linear algebraic step i ≥ 0 and each linearization step
k ≥ 1, this gives rise to a residual vector Rn,k,i

h ∈ Rm defined by

Rn,k,i
h := Fn,k−1

− An,k−1 Xn,k,i
h . (1.5)

In the present work, we focus on answering the following questions: To which precision should the linear
system (1.4) be approximated? To which precision should the nonlinear non-differentiable system (1.3) be
approximated? Can we estimate the total error, as well as the various error components (discretization, linearization,
algebraic) of the overall numerical approximation of the exact solution u of (1.2)? Can we reduce the typical number
of iterations of both linearization and algebraic solvers?

Our key tool to propose answers to the above questions is the a posteriori error analysis. An important amount
of work has been performed in the recent past on a posteriori error estimates for variational inequalities, see
Ainsworth and Oden [21] and Verfürth [22] for a general introduction. For the elliptic setting, we can mention
the contributions [23–26], where typically P1 discretizations are addressed. In contrast to these references, in Bürg
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and Schröder [27] and Dabaghi et al. [28], a Pp conforming finite element discretization is considered. Moreover,
in [28], three components of the error are distinguished: the discretization error, the semismooth linearization error,
and the iterative algebraic error.

In the context of parabolic problems, a posteriori analysis has also received a significant attention over the past
decade. For parabolic equations, we mention Verfürth [29], Bernardi, Bergham, and Mghazli [30], and Ern, Smears,
and Vohralı́k [31,32], where in particular in [31], local efficiency in space and in time for the estimators is proven.
For parabolic variational inequalities, the edifice seems still under construction. We can mention Moon, Nochetto,
Petersdorff, and Zhang [33] for a study of the Black–Scholes model, Achdou, Hecht, and Pommier [3] for a study
of the parabolic obstacle problem, and Gimperlein and Stocek [34] for a large variety of parabolic variational
inequalities. In the present work, we follow the methodology of [31] and [28] to derive a posteriori error estimates
with distinction of each component of the error. In particular, this enables us to define adaptive stopping criteria
for nonlinear semismooth and linear algebraic solvers, which is new to the best of our knowledge. Importantly, it
enables to save many unnecessary iterations.

To exemplify our approach, we consider the system of unsteady parabolic variational inequalities, given as an
extension of the stationary model problem studied in [28,35,36], see (2.1). Two important difficulties arise for the
a posteriori analysis in this setting:

(1) Denote by uk,i
hτ :=

(
uk,i

1hτ , uk,i
2hτ

)
the space–time numerical approximation, where the indices k, i indicate the

presence of inexact linearization and algebraic solvers and where uk,i
hτ is piecewise affine and continuous in time and

piecewise polynomial of degree p and continuous for each variable in space. Because of the use of polynomials
of order p ≥ 2, and because of the incomplete nonlinear and algebraic convergences in inexact schemes (even
when p = 1), uk,i

hτ is nonconforming in the sense that uk,i
hτ /∈ Kt

g (uk,i
1hτ ≥ uk,i

2hτ does not hold everywhere in Ω for
the model problem, see (2.1)). The same phenomenon occurs for λk,i

hτ that denotes the discrete counterpart of the
Lagrange multiplier λ. The conformity only occurs in the particular case p = 1 and when both linearization and
algebraic solvers have converged.

(2) We cannot easily provide, as for the parabolic heat equation [31], an a posteriori upper bound for the
time derivative

∂t

(
u − uk,i

hτ

)
[L2(0,T ;H−1(Ω))]2 . To tackle this difficulty at least for p = 1 and exact solvers,

where we simply denote uhτ = uk,i
hτ the numerical approximation, we construct an element z ∈ Kt

g such that
∥u − z∥[

L2(0,T ;H1
0 (Ω))

]2 is closely linked to ∥∂t (u − uhτ )∥[L2(0,T ;H−1(Ω))]2 and such that the a posteriori error estimate

holds as

∥u − uhτ∥
2[

L2(0,T ;H1
0 (Ω))

]2 + ∥u − z∥2[
L2(0,T ;H1

0 (Ω))
]2 + ∥(u − uhτ ) (·, T )∥2

L2(Ω) ≤ (η(uhτ ))2 , (1.6)

with η(uhτ ) a fully computable a posteriori error estimate, only depending on the approximate solution uhτ .
In this contribution, we first present the model problem, its weak formulation, and its discretization with the

backward Euler scheme in time and the conforming Pp (p ≥ 1) finite element method in space which takes the
form (1.3). Then, we present the concept of inexact semismooth Newton methods to approximate the solution of our
system of algebraic inequalities at each time step. Next, we provide the a posteriori analysis following the approach
of the equilibrated flux reconstructions. In particular, we derive an a posteriori error estimate for the linear finite
elements (p = 1) at each time step n, when the semismooth Newton solver as well as the algebraic iterative solver
have converged. Then we can estimate the error as shown in (1.6). We next provide a second a posteriori error
estimate in the energy norm, valid for any polynomial degree p ≥ 1, at each semismooth linearization iteration
k ≥ 1, and each iterative algebraic solver iteration i ≥ 0. This estimate only bounds the first component on the left-
hand side of (1.6), but distinguishes the different error components, namely the discretization error, the semismooth
linearization error, the algebraic error, and the initial error, taking the formu − uk,i

hτ

[
L2(0,T ;H1

0 (Ω))
]2 ≤ η̃(uk,i

hτ ) ≤ η
k,i
disc + η

k,i
lin + η

k,i
alg + ηinit.

This leads us to a proposition of an adaptive inexact semismooth Newton algorithm for parabolic variational
inequalities which relies on a posteriori stopping criteria for the linear and nonlinear solvers. Finally, we present
numerical experiments when p = 1 and p = 2 with semismooth Newton linearization algorithms, in particular the
Newton-min and the Newton–Fischer–Burmeister ones, in combination with the GMRES algebraic solver, assessing
the strengths of our approach.
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2. Model problem and setting

Let Ω ⊂ R2 be a polygonal domain and T > 0 be the final simulation time. The model problem we consider
here is to find u1, u2, and λ such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t u1 − µ1∆u1 − λ = f1 in Ω × ]0, T [ ,
∂t u2 − µ2∆u2 + λ = f2 in Ω × ]0, T [ ,
u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in Ω × ]0, T [ ,
u1 = g, u2 = 0 on ∂Ω × ]0, T [ ,

u1(0) = u0
1, u2(0) = u0

2, u0
1 − u0

2 ≥ 0 in Ω .

(2.1)

Here, the real coefficients µ1 and µ2 are supposed constant and strictly positive, and, for the sake of simplicity, we
assume that the Dirichlet boundary condition g > 0 is also a constant. The source term f := ( f1, f2) is supposed to
belong to

[
L2(0, T ; L2(Ω ))

]2. Finally, the initial conditions are supposed to satisfy u0
:=
(
u0

1, u0
2

)
∈ H 1

g (Ω )×H 1
0 (Ω )

and u0
1 − u0

2 ≥ 0 a.e. in Ω . The first two equations of (2.1) are of parabolic type. The third line of (2.1) states
linear complementarity conditions expressing that either u1 −u2 > 0 and λ = 0, or u1 −u2 = 0 and λ > 0. Observe
that when u1 − u2 > 0 and λ = 0 everywhere in Ω × ]0, T [, problem (2.1) is equivalent to solving two separated
heat equations. On the other hand, when f1 and f2 are independent of time and ∂t u1 = ∂t u2 = 0, (2.1) becomes
the stationary contact problem between two membranes studied in [19,28,35–37].

We define the sets

Λ :=
{
χ ∈ L2(Ω ), χ ≥ 0 a.e. in Ω

}
and Ψ := L2(0, T ;Λ).

We also introduce the nonempty closed convex set

Kg :=
{
(v1, v2) ∈ H 1

g (Ω ) × H 1
0 (Ω ), v1 − v2 ≥ 0 a.e. in Ω

}
, (2.2)

as well as its evolutive-in-time version Kt
g defined by (1.1). For a set O of R2, we denote its Lebesgue measure

by |O| and the L2(O) scalar product for w := (w1, w2) ∈ [L2(O)]2 by (w1, w2)O :=
∫
O w1w2 dx. We also use the

notations ∥w1∥
2
O := (w1, w1)O, ∥w∥

2
O :=

∑
α=1,2 ∥wα∥

2
O. The compact notations

a(u, v) :=

2∑
α=1

µα (∇uα,∇vα)Ω , b(v, χ) := (χ, v1 − v2)Ω (2.3)

will be useful henceforth, where u = (u1, u2), v = (v1, v2), a is continuous and coercive as described in the
introduction, and b is a continuous bilinear form on

[
H 1(Ω )

]2
× L2(Ω ). In the sequel, boldface variables such as v

will denote couples of variables like (v1, v2). For v ∈ [H 1
0 (O)]2 and w ∈ [L2(0, T ; H 1

0 (Ω ))]2, we define the space
energy and the space–time energy norms by

|||v|||O :=

{
2∑
α=1

µα ∥∇vα∥
2
O

} 1
2

, |||w|||Ω,T :=

{∫ T

0
|||w|||

2
Ω (t) dt

} 1
2

. (2.4)

The weak formulation of problem (2.1) is given by the parabolic variational inequality (1.2) and it is well-posed.
To illustrate the construction of the numerical discretization in Section 3, let us also mention that alternatively, one
could look for (u1, u2, λ) ∈ L2(0, T ; H 1

g (Ω ))× L2(0, T ; H 1
0 (Ω ))×Ψ such that ∂t uα ∈ L2(0, T ; H−1(Ω )), α = 1, 2,

and satisfying for almost all t ∈ ]0, T [ and for all (v1, v2, χ) ∈ H 1
0 (Ω ) × H 1

0 (Ω ) × Λ

⟨∂t u(t), v⟩ + a(u(t), v) − b(v, λ(t)) = ( f (t), v)Ω ,
b(u(t), χ − λ(t)) ≥ 0

u(0) = u0.

(2.5)

The second line in (2.5) can be interpreted as a linear complementarity constraint, see a derivation in the case of a
stationary problem in [36],

(u1 − u2) (t) ≥ 0, λ(t) ≥ 0, λ(t) (u1 − u2) (t) = 0. (2.6)
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3. Discretization and semismooth Newton linearization

Our discretization of (2.1) relies on the backward Euler scheme in time and on the conforming finite element
method of degree p ≥ 1 in space. For the convenience of the reader, we give in this section the main results
concerning the discretization, without proofs. They are an extension to the case of parabolic inequalities and for
any p ≥ 2 of the results given in [28,37] for a stationary problem. The details are provided in [38, Sec. 2.5].

3.1. Setting

For the time discretization, we introduce a division of the interval [0, T ] into subintervals In := [tn−1, tn],
1 ≤ n ≤ Nt, such that 0 = t0 < t1 < · · · < tNt = T . The time steps are denoted by ∆tn := tn − tn−1, n = 1, . . . , Nt.
The space domain Ω is discretized with a conforming triangular mesh Th . The set of vertices of Th is denoted by
Vh and is partitioned into interior vertices V i

h and boundary vertices Ve
h . The vertices of an element K ∈ Th are

collected in the set VK . Denote by hK the diameter of a triangle K and h := maxK∈Th hK . For the vertex a ∈ Vh ,
let the patch ωa

h ⊂ Ω be the domain made up of the elements of Th that share a. In the sequel, we use the discrete
conforming space of piecewise polynomial and continuous functions

X p
h :=

{
vh ∈ C0(Ω ); vh |K ∈ Pp(K ) ∀K ∈ Th

}
⊂ H 1(Ω ),

where Pp(K ) stands for the set of polynomials of total degree less than or equal to p on the element K . We also
denote by V p the set of the Lagrange nodes xl and by N p its cardinality. The internal nodes are collected in the set
V p,i whose cardinality is N p,i, and the boundary nodes are collected in the set V p,e. The Lagrange basis functions
of X p

h are denoted by
(
ψh,xl

)
1≤l≤N p , xl ∈ V p; ψh,xl takes value one in xl and zero in all other Lagrange nodes.

In the particular case p = 1, the set V1 coincides with Vh , and the Lagrange basis functions are the “hat” basis
functions denoted by ψh,a, a ∈ Vh . We also introduce the boundary-aware set and space

X p
gh :=

{
vh ∈ X p

h , vh = g on ∂Ω
}

⊂ H 1
g (Ω ), X p

0h := X p
h ∩ H 1

0 (Ω ),

and the convex set

Kp
gh :=

{
vh = (v1h, v2h) ∈ X p

gh × X p
0h, v1h(xl) − v2h(xl) ≥ 0 ∀xl ∈ V p,i

}
. (3.1)

Recall the definition (2.2) and observe that K1
gh ⊂ Kg holds in the case p = 1 but Kp

gh ̸⊂ Kg for p ≥ 2. For
α = 1, 2, let us introduce the piecewise constant in time functions f̃α ∈ L2(0, T ; L2(Ω )) such that

( f̃α)|In :=
1

∆tn

∫
In

fα(t) dt, (3.2)

and denote f̃ n
α := ( f̃α)|In ∈ L2(Ω ), f̃ :=

(
f̃1, f̃2

)
, and f̃

n
:=
(

f̃ n
1 , f̃ n

2

)
.

3.2. Discrete reduced problem and discrete saddle-point problem

Let

cn(un
h, vh) :=

1
∆tn

2∑
α=1

(
un
αh, vαh

)
Ω
, 1 ≤ n ≤ Nt.

Given u0
h ∈ Kp

gh , the discrete reduced problem corresponding to (1.2) consists in searching for all 1 ≤ n ≤ Nt

un
h ∈ Kp

gh such that for all vh ∈ Kp
gh

cn
(
un

h − un−1
h , vh − un

h

)
+ a(un

h, vh − un
h) ≥

(
f̃

n
, vh − un

h

)
Ω
. (3.3)

From the Lions–Stampacchia theorem [39], the discrete problem (3.3) admits a unique solution. Recall that when
p ≥ 2, un

h is typically nonconforming in the sense that un
h /∈ Kg .

Following the methodology of [26–28,35], we define the discrete scalar product for all (wh, vh) ∈ X p
h × X p

h ,

⟨wh, vh⟩h :=

⎧⎪⎨⎪⎩
∑
a∈Vh

wh(a)vh(a)
|ωa

h |

3
if p = 1, (a)

(wh, vh)Ω if p ≥ 2. (b)
(3.4)
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Then, knowing un
h , the solution of (3.3), we define for 1 ≤ n ≤ Nt and for all α = 1, 2 the functions λn

αh ∈ X p
h by

⟨
λn
αh, ψh,xl

⟩
h := (−1)α

[
−

1
∆tn

(
un
αh − un−1

αh , ψh,xl

)
Ω

− µα
(
∇un

αh,∇ψh,xl

)
Ω

+
(

f̃ n
α , ψh,xl

)
Ω

]
∀xl ∈ V p,i,

⟨λn
αh, ψh,xl ⟩h := 0 ∀xl ∈ V p,e.

(3.5)

Next, we define the discrete convex set

Λ
p
h :=

{
vh ∈ X p

h ;
⟨
vh, ψh,xl

⟩
h ≥ 0 ∀xl ∈V p,i,

⟨
vh, ψh,xl

⟩
h =0 ∀xl ∈V p,e} . (3.6)

Note that Λp
h ̸⊂ Λ for p ≥ 2. For linear finite elements (p = 1), one has

Λ1
h =

{
vh ∈ X1

0h; vh(a) ≥ 0 ∀a ∈ V i
h

}
=
{
vh ∈ X1

0h; vh ≥ 0
}

⊂ Λ. (3.7)

The following Lemma is a generalization to the case of parabolic inequality and with p ≥ 2 of [37, Lemma 13].

Lemma 3.1. Let 1 ≤ n ≤ Nt be a time step and un
h ∈ Kp

gh be the solution of the reduced discrete problem (3.3).
With the construction (3.5), the functions λn

1h and λn
2h defined by (3.5) coincide, and we set λn

h := λn
1h = λn

2h .
Furthermore, there holds λn

h ∈ Λ
p
h .

It will be useful to also consider the discrete formulation corresponding to problem (2.5). Given u0
h ∈ Kp

gh , it
consists, for each n = 1 · · · Nt, in searching (un

h, λ
n
h) ∈ [X p

gh × X p
0h] ×Λ

p
h such that for all (vh, χh) ∈ [X p

0h]2
×Λ

p
h ,

cn
(
un

h − un−1
h , vh

)
+ a(un

h, vh) −
⟨
λn

h, v1h − v2h
⟩
h =

(
f̃

n
, vh

)
Ω
, (3.8a)⟨

χh − λn
h, un

1h − un
2h

⟩
h ≥ 0. (3.8b)

We can now link formulations (3.3) and (3.8). The proof of the following lemma is a direct extension of
[37, Lemma 13] in the case p = 1.

Lemma 3.2. Let 1 ≤ n ≤ Nt be a time step. For any solution (un
h, λ

n
h) of problem (3.8), un

h is a solution of
problem (3.3). Conversely, for any solution un

h of problem (3.3), defining the function λn
h := λn

αh , α = 1, 2, by (3.5),
(un

h, λ
n
h) is a solution of problem (3.8).

From Lemma 3.2, we deduce that problem (3.8) admits a unique weak solution for each n = 1, . . . , Nt. We
finish this section by the following remark:

Remark 3.3. Taking in (3.8b) χh = 0 and next χh = 2λn
h ∈ Λ

p
h gives

⟨
λn

h, un
1h − un

2h

⟩
h = 0. As un

h ∈ Kp
gh and

λn
h ∈ Λ

p
h , we obtain a discrete equivalent of the complementarity condition (2.6) valid for all polynomial degrees

p ≥ 1 :(
un

1h − un
2h

)
(xl) ≥ 0 ∀xl ∈ V p,i,

⟨
λn

h, ψh,xl

⟩
h ≥ 0 ∀xl ∈ V p,i,

⟨
λn

h, ψh,xl

⟩
h = 0 ∀xl ∈ V p,e,⟨

λn
h, un

1h − un
2h

⟩
h = 0.

(3.9)

Note that for p = 1, (3.9) implies un
1h ≥ un

2h and λn
h ≥ 0 everywhere, which means that un

h ∈ Kg and λn
h ∈ Λ

on each time step n: the solution is conforming.

3.3. Numerical resolution and discrete complementarity constraints

Let n be fixed in {1, . . . , Nt}. As in [28], we write in an algebraic form the discrete problem (3.8), using the
expression (3.9) for the constraints. For the Lagrange multiplier, we will use the basis

(
Θh,xl

)
1≤l≤N p of X p

h , dual
to
(
ψh,xl

)
1≤l≤N p , given by⟨

Θh,xl , ψh,xl

⟩
h = 1 ∀xl ∈ V p, and

⟨
Θh,xl , ψh,x∗

l

⟩
h

= 0 ∀xl∗ ∈ V p, xl∗ ̸= xl . (3.10)
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Note that each vector Θh,xl of the dual basis can be determined by inverting a diagonal (lumped mass) matrix for
p = 1 and the finite element mass matrix for p ≥ 2. Note also that the support of Θh,xl is typically not local
for p ≥ 2. Importantly, all Θh,xl , ∀xl ∈ V p,i, belong to Λ

p
h , so using (3.9), λh can be decomposed on the subset(

Θh,xl

)
1≤l≤N p,i of the basis

(
Θh,xl

)
1≤l≤N p . Noting that X p

gh is decomposed as X p
gh = X p

0h + g (recall that g > 0 is
constant), the unknown piecewise polynomial functions can be decomposed as

un
1h =

N p,i∑
l=1

(
Xn

1h

)
l ψh,xl + g, un

2h =

N p,i∑
l=1

(
Xn

2h

)
l ψh,xl , λn

h =

N p,i∑
l=1

(
Xn

3h

)
l Θh,xl , (3.11)

so the algebraic vector of unknowns is [Xn
h]T

:=
[
Xn

1h, Xn
2h, Xn

3h

]T
∈ R3N p,i

. The initial value u0
h ∈ Kp

gh is
represented in the same way by the first two components of [X0

h]T
:=

[
X0

1h, X0
2h, 0

]T
∈ R3N p,i

; note that the
Lagrange multiplier λ0

h is not used, and we fix the third block component of X0
h arbitrarily to 0. In algebraic form,

(3.8a) reads as En
p Xn

h = Fn , where En
p ∈ R2N p,i,3N p,i

is the rectangular matrix defined by

En
p :=

[
µ1S +

1
∆tn

M 0 −Id

0 µ2S +
1

∆tn
M +Id

]
,

Id ∈ RN p,i,N p,i
is the identity matrix, and the finite element mass and stiffness matrices M and S belonging to

RN p,i,N p,i
are respectively defined by

Ml,m :=
(
ψh,xm , ψh,xl

)
Ω
, Sl,m :=

(
∇ψh,xm ,∇ψh,xl

)
Ω
, 1 ≤ l,m ≤ N p,i.

The right-hand side vector Fn is defined by blocks
[
Fn]T

:=
[
Fn

1, Fn
2

]T as(
Fn
α

)
l :=

(
f̃ n
α +

1
∆tn

un−1
αh , ψh,xl

)
Ω

, 1 ≤ l ≤ N p,i, α = 1, 2.

Let 1 = (1, 1, . . . , 1)T ∈ RN p,i
. Expressing the complementarity constraints by (3.9) and using (3.10), the

system (3.8) can be written for any p ≥ 1 as: for n = 1, . . . , Nt, given Xn−1
h ∈ R3N p,i

, search Xn
h ∈ R3N p,i

such
that

En
p Xn

h = Fn, (3.12a)

Xn
1h + g1 − Xn

2h ≥ 0, Xn
3h ≥ 0,

(
Xn

1h + g1 − Xn
2h

)
· Xn

3h = 0. (3.12b)

Remark 3.4. Note that un
h is expressed in the Lagrange basis

(
ψh,xl

)
1≤l≤N p,i , while λn

h is expressed with the dual
basis

(
Θh,xl

)
1≤l≤N p . It is also possible, for p ≥ 2, to express λn

h in the Lagrange basis
(
ψh,xl

)
1≤l≤N p of X p

h , see [38,
Sect. 2.5]. Unfortunately, in such a case, the complementary constraints are expressed in a less convenient manner,
with submatrices of the finite element mass matrix. Note also that the blocks Id in the matrix En

p are replaced by
the mass matrix.

3.4. Equivalent rewriting using C-functions

The complementarity constraints (3.12b) write as algebraic inequalities. We now rewrite them as nonlinear
equalities. A function f : (Rm)2 → Rm , m ≥ 1, is called a C-function or a complementarity function, see [16,17],
if

∀(x, y) ∈
(
Rm)2 f (x, y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x· y = 0.

Examples of C-functions are respectively the min, max, Fischer–Burmeister or the Mangasarian functions,

(min{x, y})l := min
{

xl , yl
}
, l = 1, . . . ,m, (3.13a)

(max{x, y})l := max
{

xl , yl
}

l = 1, . . . ,m, (3.13b)

( fFB(x, y))l :=

√
x2

l + y2
l −

(
xl + yl

)
l = 1, . . . ,m, (3.13c)

( fM(x, y))l := ξ (|xl − yl |) − ξ ( yl) − ξ (xl) l = 1, . . . ,m, (3.13d)
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where ξ : R ↦→ R is an increasing function satisfying ξ (0) = 0. These functions take rather simple forms, but
unfortunately they are not Fréchet-differentiable everywhere. Let C̃ be any C-function satisfying for m = N p,i

C̃(Xn
1h + g1 − Xn

2h, Xn
3h) = 0 ⇐⇒ Xn

1h + g1 − Xn
2h ≥ 0, Xn

3h ≥ 0, and
(
Xn

1h + g1 − Xn
2h

)
·Xn

3h = 0. Then,
introducing the function C : R3N p,i

→ RN p,i
defined as C(Xn

h) := C̃(Xn
1h + g1 − Xn

2h, Xn
3h), problem (3.12) can

be equivalently rewritten: for each n ≥ 1, given Xn−1
h ∈ R3N p,i

, search Xn
h ∈ R3N p,i

such that{
En

p Xn
h = Fn,

C(Xn
h) = 0. (3.14)

3.5. Linearization by semismooth Newton methods

Let a time step n ≥ 1 be fixed and let the last iterate from the previous time step Xn−1
h ∈ R3N p,i

be given.
We describe in this section the linearization of system (3.14) by a semismooth Newton method. Remark that the
Newton method cannot be applied to (3.14) since C is not Fréchet-differentiable. Observe more precisely that the
first 2N p,i lines of (3.14) are linear and the nonlinearity occurs in the last N p,i lines of (3.14). The function
C is locally Lipschitz and continuous so that it is differentiable almost everywhere. The semismooth Newton
linearization [16,17,40] is defined as follows: let an initial guess Xn,0

h ∈ R3N p,i
be given; typically, Xn,0

h := Xn−1
h .

At linearization step k ≥ 1, one looks for Xn,k
h ∈ R3N p,i

such that

An,k−1 Xn,k
h = Bn,k−1, (3.15)

where the matrix An,k−1
∈ R3N p,i,3N p,i

and the right-hand side vector Bn,k−1
∈ R3N p,i

are respectively given by

An,k−1
:=

[
En

p

JC(Xn,k−1
h )

]
, Bn,k−1

:=

[
Fn

JC(Xn,k−1
h )Xn,k−1

h − C(Xn,k−1
h )

]
. (3.16)

Here, the notation JC(Xn,k−1
h ) stands for the Jacobian matrix in the sense of Clarke [16,17].

For illustration, consider the semismooth min function (3.13a). Then

min
{

Xn
1h + g1 − Xn

2h, Xn
3h

}
= min

⎧⎪⎨⎪⎩
⎛⎜⎝ un

1h(x1) − un
2h(x1)

...

un
1h(xN p,i ) − un

2h(xN p,i )

⎞⎟⎠ ,
⎛⎜⎝

(
Xn

3h

)
1

...(
Xn

3h

)
N p,i

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Let the block matrices K and G in RN p,i,3N p,i
be defined respectively by K := [Id,−Id, 0], and G := [0, 0, Id].

The l th row of the Jacobian matrix JC(Xn,k−1
h ) is given by the l th row of K if un,k−1

1h (xl) − un,k−1
2h (xl) ≤

(
Xn,k−1

3h

)
l
,

and by the l th row of G if un,k−1
1h (xl) − un,k−1

2h (xl) >
(

Xn,k−1
3h

)
l
.

3.6. Iterative algebraic solvers

Let a linearization step k ≥ 1 be fixed, and apply an iterative algebraic solver with iteration index i ≥ 0 to the
linear system (3.15). Given an initial guess Xn,k,0

h ∈ R3N p,i
, often taken as Xn,k,0

h := Xn,k−1
h , where Xn,k−1

h is the
last available iterate from the previous semismooth Newton step, the algebraic residual vector on step i is defined
by

Rn,k,i
h := Bn,k−1

− An,k−1 Xn,k,i
h . (3.17)

It is a block vector [Rn,k,i
h ]T

:=

[
Rn,k,i

1h , Rn,k,i
2h , Rn,k,i

3h

]T
∈ R3N p,i

, where Rn,k,i
αh ∈ N p,i, α = 1, 2, are the components

associated to (3.12a), whereas Rn,k,i
3h ∈ N p,i is a representation of the constraints (3.12b). The algebraic solver can

be stopped when the relative algebraic residual satisfiesRn,k,i
h

/Bn,k−1
− An,k−1 Xn,k,0

h

 ≤ εk
alg. (3.18)
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3.7. Exact semismooth Newton method

The “exact semismooth Newton” method requires to solve “exactly” the linear system (3.15). To achieve this
numerically, we consider an iterative solver applied to (3.15), stopped when the criterion (3.18) is satisfied with
εk

alg close to the machine precision. For the linearization stopping criterion, we choose a tolerance εlin close to the
machine precision and stop the linearization procedure when the relative linearization residual satisfies(Fn

− En
p Xn,k

h

C(Xn,k
h )

)/(Fn
− En

p Xn,0
h

C(Xn,0
h )

) ≤ εlin, (3.19)

which means that (3.14) is solved up to εlin.

3.8. Traditional inexact semismooth Newton method

A traditional “inexact semismooth Newton” resolution of (3.14) consists in, on each linearization step k ≥ 1,
stopping the algebraic solver when (3.18) is satisfied with the forcing term εk

alg that can be “large” and generally
depends on k, see [40–42]. To stop the iterations in k, (3.19) is typically employed.

3.9. Adaptive inexact semismooth Newton method

We provide in Section 5.2 an alternative to the classical stopping criteria (3.18) and (3.19), giving rise to our
“adaptive inexact semismooth Newton” linearization, see (5.13) and (5.14) below. We do not steer the stopping via
the l2-norm of the residual vectors, which may be far from the actual errors; instead we rely on a posteriori error
estimators derived in the energy norm. This typically leads to stopping much earlier the iterations both in i and k.

3.10. Notations for the updates

When the algebraic stopping criterion (3.18) or (5.13) is satisfied, we update the solution

Xn,k
h := Xn,k,i

h .

Once the linearization stopping criterion (3.19) or (5.14) is met, we update the solution

Xn
h := Xn,k

h .

Thus, un−1
1h , un−1

2h , and λn−1
h are the functional representations of the vectors Xn−1

1h , Xn−1
2h , and Xn−1

3h , i.e. Xn−1,k,i
αh

when the stopping criteria are met.

4. A posteriori error analysis

In this section, we derive two a posteriori error estimates. First, we establish an a posteriori error estimate when
the polynomial degree p = 1 and when both the algebraic and linearization solvers have converged, i.e. (3.18)
and (3.19) are satisfied for εk

alg and εlin of the order of the machine precision. Next, we derive an a posteriori error
estimate when p ≥ 1 at any semismooth linearization step k ≥ 1 and any step of the iterative algebraic solver
i ≥ 0.

Our a posteriori analysis relies on the equilibrated flux reconstructions following the concepts of [43,44]. A
discretization flux reconstruction σ

n,k,i
αh,disc ∈ H(div,Ω ) and an algebraic error flux reconstruction σ

n,k,i
αh,alg ∈ H(div,Ω )

following the methodology of [45, Concept 4.1] are constructed. The sum of these two fluxes represents a consistent
(in H(div,Ω )) reconstruction of the gradient of un

h (up to the sign and constants µ1 and µ2). These reconstructions
are devised to capture components of error linked respectively to discretization and to the algebraic resolution. Note
that as the first equation in (3.14) is linear, there is no need for an additional linearization flux reconstruction as
in [46]. We present very briefly the developments here. Details can be found in [38, Sec. 2.6].
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4.1. Approximate solution

At each time step 1 ≤ n ≤ Nt, the approximation to the nonlinear system (3.14) gives the Xn,k,i
h ∈ R3N p,i

,
where k ≥ 1 is the semismooth Newton step and i ≥ 0 is the algebraic solver step. The functional representations of
the vectors Xn,k,i

1h , Xn,k,i
2h , and Xn,k,i

3h are then un,k,i
1h , un,k,i

2h , and λn,k,i
h , as in (3.11). Obviously,

(
un,k,i

1h , un,k,i
2h , λ

n,k,i
h

)
∈

X p
gh × X p

0h × X p
h , ∀1 ≤ n ≤ Nt. We associate to the space functions un,k,i

1h and un,k,i
2h their space–time representations

uk,i
1hτ , uk,i

2hτ

uk,i
1hτ |In :=

un,k,i
1h − un−1

1h

∆tn

(
t − tn)

+ un,k,i
1h , uk,i

2hτ |In :=
un,k,i

2h − un−1
2h

∆tn

(
t − tn)

+ un,k,i
2h , ∀1 ≤ n ≤ Nt.

Concerning the discrete Lagrange multiplier λn,k,i
h ∈ X p

h , its space–time representation is defined by a piecewise
constant-in-time function λk,i

hτ

λ
k,i
hτ |In := λ

n,k,i
h .

Note that this construction ensures that uk,i
αhτ , α = 1, 2, are continuous and piecewise affine in time, so that

∂t u
k,i
αhτ ∈ L2(0, T ; H−1(Ω )). In the expressions of uk,i

1hτ , uk,i
2hτ , and λk,i

hτ , the indices k, i are kept to indicate the
presence of inexact solvers; more precisely, un−1

αh are equal to un−1,k,i
αh for the last iterates k and i on time step n −1

when the stopping criteria are met, see Section 3.10. For each time step n, we also denote

un,k,i
1hτ := uk,i

1hτ |In , un,k,i
2hτ := uk,i

2hτ |In , (4.1)

so that

∂t u
n,k,i
1hτ |In =

1
∆tn

(
un,k,i

1h − un−1
1h

)
, ∂t u

n,k,i
2hτ |In =

1
∆tn

(
un,k,i

2h − un−1
2h

)
.

4.2. Representation of the residual

To proceed, we need to give a functional representation to (3.17). Following [45], we associate respectively
with Rn,k,i

1h and Rn,k,i
2h discontinuous elementwise polynomials rn,k,i

1h and rn,k,i
2h of degree p ≥ 1 that vanish on the

boundary of Ω . These can be easily computed solving on each element K ∈ Th a small problem with an element
mass matrix given as follows. For xl ∈ V p,i, denote by Nh,xl the number of mesh elements forming the support of
the basis function ψh,xl . Then, for all K ∈ Th and for all α ∈ {1, 2}, define rn,k,i

αh |K ∈ Pp(K ) such that:

(rn,k,i
αh , ψh,xl )K :=

(Rn,k,i
αh )l

Nh,xl

and r k,i
αh |∂K∩∂Ω := 0

for all Lagrange basis functions ψh,xl ∈ X p
h , xl ∈ V p,i, nonzero on K . It is easily seen that the first 2N p,i lines

of (3.17) then read: ∀l = 1, . . . ,N p,i,

µ1

(
∇un,k,i

1h ,∇ψh,xl

)
Ω

=
(

f̃ n
1 + λ̃

n,k,i
h,l − rn,k,i

1h − ∂t u
n,k,i
1hτ , ψh,xl

)
Ω
,

µ2

(
∇un,k,i

2h ,∇ψh,xl

)
Ω

=

(
f̃ n
2 − λ̃

n,k,i
h,l − rn,k,i

2h − ∂t u
n,k,i
2hτ , ψh,xl

)
Ω
,

(4.2)

where

λ̃
n,k,i
h,l :=

{
λ

n,k,i
h (xl) (real number given by the vertex value of λn,k,i

h ) if p = 1,
λ

n,k,i
h (function λn,k,i

h , the index l is discarded) if p ≥ 2.
(4.3)
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We also use the shorthand notation for a ∈ Vh

λ̃
n,k,i
h,a =

{
λ

n,k,i
h (a) if p = 1,
λ

n,k,i
h if p ≥ 2.

4.3. Flux reconstructions

Let α ∈ {1, 2}, 1 ≤ n ≤ Nt, k ≥ 1, and i ≥ 0 be fixed. The discretization fluxes are constructed by solving
local mixed problems in patches of elements ωa

h for each vertex a ∈ Vh . This provides σ
n,k,i,a
αh,disc, and their sums

σ
n,k,i
αh,disc :=

∑
a∈Vh

σ
n,k,i,a
αh,disc are the discretization fluxes. With respect to the stationary case [28, Sec. 4.2], the only

difference is the source term for the divergence equation in the mixed system:

g̃n,k,i,a
αh :=

(
f̃ n
α − (−1)αλ̃n,k,i

h,a − rn,k,i
αh − ∂t u

n,k,i
αhτ |ωa

h

)
ψh,a − µα∇un,k,i

αh · ∇ψh,a,

where λ̃n,k,i
h,a and rn,k,i

αh are defined in the previous section. This yields σ
n,k,i
αh,disc ∈ RTp(Ω ) ⊂ H(div,Ω ), where

RTp(Ω ) is the Raviart–Thomas subspace of H(div,Ω ) of order p ≥ 1, [47].
The algebraic error flux reconstructions σ

n,k,i
αh,alg are obtained by the methodology of [45, Concept 4.1] and yield

σ
n,k,i
αh,alg ∈ RTp(Ω ) ⊂ H(div,Ω ) and ∇·σ

n,k,i
αh,alg = rn,k,i

αh .

The total flux reconstructions are the sums

σ
n,k,i
αh := σ

n,k,i
αh,disc + σ

n,k,i
αh,alg α = 1, 2. (4.4)

They crucially satisfy(
∇·σ

n,k,i
αh , qh

)
K

=
(

f̃ n
α − (−1)αλn,k,i

h − ∂t u
n,k,i
αhτ , qh

)
K ∀qh ∈ Pp(K ), ∀K ∈ Th . (4.5)

For α = 1, 2, we finally define the piecewise-constant-in-time reconstructions,(
σ

k,i
αhτ , σ

k,i
αhτ,disc, σ

k,i
αhτ,alg

)
∈
[
L2(0, T ; H(div,Ω ))

]3
,

σ
k,i
αhτ |In = σ

n,k,i
αh , σ

k,i
αhτ,disc|In = σ

n,k,i
αh,disc, σ

k,i
αhτ,alg|In = σ

n,k,i
αh,alg, ∀1 ≤ n ≤ Nt.

(4.6)

4.4. An a posteriori error estimate for p = 1 and exact solvers

In this section, we establish an a posteriori error estimate between the exact solution u ∈ Kt
g given by (1.2) and

the approximate numerical solution uhτ , for p = 1 when the semismooth Newton solver and the iterative algebraic
solver have converged. Here, we discard the indices k and i . Recall that when p = 1 and for exact solvers, the
constraints in (3.9) imply that the approximate solution is conforming in the sense that uhτ ∈ Kt

g and λhτ ∈ Ψ .

Definition 4.1. Let 1 ≤ n ≤ Nt, K ∈ Th , and α = 1, 2. We define the residual estimator ηn
R,K ,α , the flux estimator

ηn
F,K ,α , the constraint estimator ηn

C,K , and the data oscillation estimator ηn
osc,K ,α by the temporal functions, for all

t ∈ In ,

ηn
R,K ,α(t) :=

hK

π
µ

−
1
2

α

 f̃ n
α − ∂t un

αhτ − (−1)αλn
h − ∇·σ n

αh


K
, (4.7)

ηn
F,K ,α(t) :=

µ 1
2
α∇un

αhτ + µ
−

1
2

α σ n
αh


K
, (4.8)

ηn
C,K (t) := 2

(
λn

h, un
1hτ − un

2hτ

)
K , (4.9)

ηn
osc,K ,α(t) := CPFhΩµ

−
1
2

α

 fα − f̃ n
α


K
. (4.10)
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Remark 4.2. The estimators (4.7)–(4.10) are an extension of the estimators of [28] derived in the case of
elliptic variational inequations to the parabolic case. They reflect various violations of physical properties of the
approximate solution

(
un

1hτ , un
2hτ , λ

n
hτ

)
: ηn

R,K ,α and ηn
F,K ,α represent the nonconformity of the flux, i.e., the fact that

−µα∇un
αhτ ̸∈ L2(0, T ; H(div,Ω )); ηn

C,K reflects inconsistencies in the complementarity conditions at the discrete
level, i.e., the fact that (un

1hτ − un
2hτ )λn

h ̸= 0. Note that the last constraint in (3.9) for p = 1 only requires that
(un

1h −un
2h)λn

h vanishes at each vertex of Th but not everywhere in Ω and not on the whole time interval In . Finally,
ηn

osc,K ,α represents the local distance between the right-hand side and its time-averages over In . Note that this latter

term is an estimator of
 fα − f̃ n

α


H−1(Ω)

(see (4.16) further) with a rather pessimistic constant, see the discussion
in [31, Rem. 5.4] and the references therein.

4.4.1. A control of the energy error
Recall the Poincaré–Friedrichs and the Poincaré–Wirtinger inequalities, denoting by vO the mean value of v

over domain O and hO the diameter of O,

∥v∥O ≤ CPFhO ∥∇v∥O ∀v ∈ H 1
0 (O), (4.11a)

∥v − vO∥O ≤ CPWhO ∥∇v∥O ∀v ∈ H 1(O). (4.11b)

We then have:

Theorem 4.3 (Case p = 1 and Exact Solvers). Let u ∈ Kt
g be the exact solution given by (1.2). Let uhτ ∈ Kt

g and
λhτ ∈ Ψ be the approximate solutions for p = 1 and exact solvers. Consider the equilibrated flux reconstructions
σ αhτ ∈ L2(0, T ; H(div,Ω )) given by (4.4), (4.6). Using the error estimators defined by (4.7)–(4.10), there holds

|||u − uhτ |||
2
Ω,T + ∥(u − uhτ ) (·, T )∥2

Ω ≤ η2
:=⎧⎪⎨⎪⎩

⎛⎝ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn

R,K ,α+ ηn
F,K ,α

)2

⎞⎠1
2

+

⎛⎝ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn

osc,K ,α

)2

⎞⎠1
2
⎫⎪⎬⎪⎭

2

+

Nt∑
n=1

∫
In

∑
K∈Th

ηn
C,K (t) dt + ∥(u − uhτ ) (·, 0)∥2

Ω .

(4.12)

To prove Theorem 4.3, we first introduce the following lemma.

Lemma 4.4. Let a and b be the forms defined in (2.3). Let u ∈ Kt
g be the weak solution from (1.2) and let

y := (y1, y2) ∈ Kt
g be arbitrary. Then, for the vector y∗

:=
(
y∗

1 , y∗

2

)
:= (u1 − y1, u2 − y2) ∈

[
L2(0, T ; H 1

0 (Ω ))
]2,

there holds

A :=

∫ T

0

((
f , y∗

)
Ω

−
(
∂t uhτ , y∗

)
Ω

− a(uhτ , y∗) + b( y∗, λhτ )
)

(t) dt

≤

⎛⎜⎝
⎧⎨⎩

Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn

R,K ,α + ηn
F,K ,α

)2 (t) dt

⎫⎬⎭
1
2

+

⎧⎨⎩
Nt∑

n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn

osc,K ,α

)2 (t) dt

⎫⎬⎭
1
2
⎞⎟⎠⏐⏐⏐⏐⏐⏐ y∗

⏐⏐⏐⏐⏐⏐
Ω,T .

(4.13)
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Proof. Adding and subtracting σ αhτ (t) ∈ H(div,Ω ), using the Green formula with y∗
α(t) ∈ H 1

0 (Ω ), α = 1, 2, and
employing the decomposition fα = f̃ n

α +
(

fα − f̃ n
α

)
, we have

A =

∫ T

0

2∑
α=1

(
fα − f̃ n

α , y∗

α

)
Ω

(t) dt +

∫ T

0

2∑
α=1

(
f̃ n
α − ∂t uαhτ − ∇·σ αhτ − (−1)αλhτ , y∗

α

)
Ω

(t) dt

−

∫ T

0

2∑
α=1

(
µ

1
2
α∇uαhτ + µ

−
1
2

α σ αhτ , µ
1
2
α∇y∗

α

)
Ω

(t) dt.

Let α = 1, 2, 1 ≤ n ≤ Nt, t ∈ In , and K ∈ Th be fixed. Denoting by wK the mean value over K of w ∈ L2(Ω )
and using the property (4.5), one has(

f̃ n
α −∂t un

αhτ−(−1)αλn
h−∇·σ n

αh, y∗

α

)
K (t) =

(
µ

−
1
2

α

(
f̃ n
α − ∂t un

αhτ − (−1)αλn
h − ∇·σ n

αh

)
, µ

1
2
α

(
y∗

α −
(
y∗
α

)
K

))
K

(t).

Using the Cauchy–Schwarz inequality and next the Poincaré–Wirtinger inequality (4.11b) with CPW =
1
π

for the
convex mesh element K , we get(

f̃ n
α − ∂t un

αhτ − (−1)αλn
h − ∇·σ n

αh, y∗

α

)
K (t) ≤ ηn

R,K ,α

µ 1
2
α∇y∗

α


K

(t). (4.14)

Next, as a result of the Cauchy–Schwarz inequality, we have(
µ

1
2
α∇un

αhτ + µ
−

1
2

α σ n
αh, µ

1
2
α∇y∗

α

)
K

(t) ≤ ηn
F,K ,α

µ 1
2
α∇y∗

α


K

(t). (4.15)

Finally, the Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality over the entire computational domain
Ω give

(
fα − f̃ n

α , y∗

α

)
Ω

(t) ≤ CPFhΩµ
−

1
2

α

 fα − f̃ n
α


Ω

µ 1
2
α∇y∗

α


Ω

(t) =

⎛⎝∑
K∈Th

(ηn
osc,K ,α)2(t)

⎞⎠ 1
2 µ 1

2
α∇y∗

α


Ω

(t).

(4.16)

Therefore, combining (4.14)–(4.16) and applying the Cauchy–Schwarz inequality, we get the desired result. □

Proof of Theorem 4.3. From the identity

1
2

∥(u − uhτ ) (·, T )∥2
Ω =

1
2

∥(u − uhτ ) (·, 0)∥2
2 +

∫ T

0

2∑
α=1

⟨∂t (uα − uαhτ ), uα − uαhτ ⟩(t) dt, (4.17)

posing B := |||u − uhτ |||
2
Ω,T +

1
2

∥(u − uhτ ) (·, T )∥2
Ω , using definition (2.4) and (4.17), we get

B =

∫ T

0
(a(u − uhτ , u − uhτ ) + ⟨∂t u, u − uhτ ⟩ − (∂t uhτ , u − uhτ )Ω ) (t)dt +

1
2

∥(u − uhτ ) (·, 0)∥2
Ω .

Then, using the weak formulation (1.2) with v = uhτ ∈ Kt
g , we obtain

B ≤

∫ T

0

(
( f − ∂t uhτ , u − uhτ )Ω − a(uhτ , u − uhτ )

)
(t) dt +

1
2

∥(u − uhτ ) (·, 0)∥2
Ω .

Next, adding and subtracting
∫ T

0 b(u − uhτ , λhτ )(t) dt and noting that (−λhτ , u1 − u2)Ω (t) ≤ 0 for a.e t ∈ ]0, T [
because λhτ ∈ Ψ , we obtain

B ≤

∫ T

0

(
( f − ∂t uhτ , u − uhτ )Ω − a(uhτ , u − uhτ ) + b(u − uhτ , λhτ )

)
(t) dt

+

Nt∑
n=1

∫
In

∑
K∈Th

ηn
C,K

2
(t) dt +

1
2

∥(u − uhτ ) (·, 0)∥2
Ω .
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Finally, employing Lemma 4.4 with y = uhτ ∈ Kt
g and using the Young inequality A1 A2 ≤

1
2

(
A2

1 + A2
2

)
,

A1, A2 ≥ 0, we get the desired result. □

4.4.2. A control of the temporal derivative error
So far, we have established an a posteriori error estimate between the exact solution u ∈ Kt

g and its approximate
solution uhτ ∈ Kt

g in the energy norm. As we mentioned in the introduction, we cannot easily estimate the norm
∥∂t (u − uhτ )∥[L2(0,T ;H−1(Ω))]2 . We now give our replacement result. Given u ∈ Kt

g and for the approximate solution
uhτ ∈ Kt

g , let z ∈ Kt
g be such that, for all v ∈ Kt

g ,∫ T

0
a(z − u, v − z)(t) dt ≥ −

∫ T

0

2∑
α=1

⟨∂t (uα − uαhτ )− (−1)αλhτ , vα − zα⟩(t) dt,

z(0) = uhτ (0) ∈ Kg.

(4.18)

As a result of the Lions–Stampacchia theorem [39], problem (4.18) is well posed. Now, we give an a posteriori
error estimate on the error |||u − z|||Ω,T .

Theorem 4.5 (Case p = 1 and Exact Solvers). Let u ∈ Kt
g be the solution of the weak formulation given by (1.2)

and let z ∈ Kt
g be the solution of (4.18). Assume that the hypotheses of Theorem 4.3 hold and let the total estimator

η be defined by (4.12). Then

|||u − z|||Ω,T ≤ 2η.

Proof. Setting w∗
:= u− z, we have |||w∗|||

2
Ω,T =

∫ T
0 a(u− z, u− z) dt. For v = u ∈ Kt

g , we in turn get from (4.18)⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐2

Ω,T ≤

∫ T

0

(
⟨∂t (u − uhτ ) ,w

∗
⟩ + b(w∗, λhτ )

)
(t) dt +

∫ T

0

(
a(u − uhτ ,w

∗) − a(u − uhτ ,w
∗)
)

(t) dt.

Employing the weak formulation (1.2) with v = z ∈ Kt
g we obtain⏐⏐⏐⏐⏐⏐w∗

⏐⏐⏐⏐⏐⏐2
Ω,T ≤

∫ T

0

[(
f − ∂t uhτ ,w

∗
)
Ω

+ b(w∗, λhτ ) − a(uhτ ,w
∗) − a(u − uhτ ,w

∗)
]

(t) dt. (4.19)

To bound the first three terms of (4.19), we employ Lemma 4.4 with y = z ∈ Kt
g and next the Young inequality

(AB ≤
1
4 A2

+ B2) to see

⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐2

Ω,T ≤

⎛⎜⎝
⎧⎨⎩

Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn

R,K ,α + ηn
F,K ,α

)2 (t) dt

⎫⎬⎭
1
2

+

⎧⎨⎩
∫ T

0

2∑
α=1

∑
K∈Th

(
ηn

osc,K ,α

)2 (t) dt

⎫⎬⎭
1
2
⎞⎟⎠

2

+
1
4

⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐2

Ω,T −

∫ T

0
a(u − uhτ ,w

∗)(t) dt.

(4.20)

The Cauchy–Schwarz inequality and the Young inequality give

−

∫ T

0
a(u − uhτ ,w

∗)(t) dt ≤ |||u − uhτ |||
2
Ω,T +

1
4

⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐2

Ω,T .
(4.21)

Finally, combining (4.20) and (4.21) with (4.12), we get |||w∗|||
2
Ω,T ≤ 4η2 which is the desired result. □

Combining Theorems 4.3 and 4.5, we infer

Corollary 4.6 (Case p = 1 and Exact Solvers). Assume the hypotheses of Theorem 4.5. Then

|||u − uhτ |||
2
Ω,T + |||u − z|||2Ω,T + ∥(u − uhτ ) (·, T )∥2

Ω ≤ 5η2. (4.22)
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We show now that the error measure |||u − z|||Ω,T is linked to the temporal derivative error; unfortunately we
could not obtain the (more interesting) converse estimate that would allow to control the temporal derivative error
by the estimators.

Lemma 4.7. Assuming the hypotheses of Theorem 4.5 and denoting by Cµ := 2/min
(
µ

1
2
1 , µ

1
2
2

)
, we have

|||u − z|||Ω,T ≤ Cµ

⎛⎜⎝(∫ T

0

2∑
α=1

∥∂t (uα − uαhτ )∥
2
H−1(Ω) (t) dt

) 1
2

+

(∫ T

0
∥λhτ − λ∥2

H−1(Ω) (t) dt
) 1

2

⎞⎟⎠ .
Proof. Denoting by w∗

:= u − z, we have⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐2

Ω,T ≤

∫ T

0

2∑
α=1

⟨∂t (uα − uαhτ ) , w
∗

α⟩(t) dt +

∫ T

0

(
λhτ , w

∗

1 − w∗

2

)
Ω

(t) dt.

Next, we have
(
λhτ , w

∗

1 − w∗

2

)
Ω

=
(
λhτ − λ,w∗

1 − w∗

2

)
Ω

+
(
λ,w∗

1 − w∗

2

)
Ω

, and from (2.1) λ(u1 − u2) = 0. As
λ ∈ Ψ and z ∈ Kt

g , we have∫ T

0

(
λ,w∗

1 − w∗

2

)
Ω

(t) dt ≤ 0, and thus
∫ T

0

(
λhτ , w

∗

1 − w∗

2

)
Ω

(t) dt ≤

∫ T

0

(
λhτ − λ,w∗

1 − w∗

2

)
Ω

(t) dt.

Finally,⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐2

Ω,T ≤

∫ T

0

2∑
α=1

⟨∂t (uα − uαhτ ) , w
∗

α⟩(t) dt +

∫ T

0

(
λhτ − λ,w∗

1 − w∗

2

)
Ω

(t) dt. (4.23)

We denote by A1 the first term in the right-hand side of (4.23). For A1, we have as a result of the H−1 norm
definition and using the Cauchy–Schwarz inequality

A1 ≤

∫ T

0

2∑
α=1

sup
Φα∈H1

0 (Ω)

⟨
µ

−
1
2

α ∂t (uα − uαhτ ) , µ
1
2
αΦα

⟩
µ 1

2
α∇Φα


Ω

µ 1
2
α∇w∗

α


Ω

(t) dt

=

∫ T

0

2∑
α=1

µ−
1
2

α ∂t (uα − uαhτ )


H−1(Ω)

µ 1
2
α∇w∗

α


Ω

(t) dt

≤

(∫ T

0

2∑
α=1

µ−
1
2

α ∂t (uα − uαhτ )

2

H−1(Ω)
(t) dt

) 1
2 ⏐⏐⏐⏐⏐⏐w∗

⏐⏐⏐⏐⏐⏐
Ω,T .

(4.24)

For A2, we employ the Cauchy–Schwarz inequality

A2 =

∫ T

0

(
µ

−
1
2

1 (λhτ − λ) , µ
1
2
1 w

∗

1

)
Ω

(t) dt −

∫ T

0

(
µ

−
1
2

2 (λhτ − λ) , µ
1
2
2 w

∗

2

)
Ω

(t) dt

≤Cµ

(∫ T

0
∥λhτ − λ∥2

H−1(Ω) (t) dt
) 1

2 ⏐⏐⏐⏐⏐⏐w∗
⏐⏐⏐⏐⏐⏐

Ω,T .

(4.25)

Combining (4.23), (4.24), and (4.25), we obtain the desired result. □

4.5. An a posteriori error estimate for p ≥ 1 and each step k ≥ 1, i ≥ 0

In this section, we devise an a posteriori error estimate which is valid for any polynomial degree p ≥ 1, at any
semismooth Newton step k ≥ 1, and at any algebraic step i ≥ 0. Several difficulties arise. Contrary to the previous
case of Section 4.4, the constraints (3.9) are not satisfied because the convergence is not reached. Moreover, even if
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they were satisfied, the solution remains nonconforming for p ≥ 2 because Kp
gh ̸⊂ Kg and Λ

p
h ̸⊂ Λ. Consequently,

we have to work with a nonconforming space–time solution uk,i
hτ /∈ Kt

g and λhτ /∈ Ψ . To cope with these difficulties,
we employ the decomposition

λ
n,k,i
h = λ

n,k,i,pos
h + λ

n,k,i,neg
h (4.26)

where λn,k,i,pos
h = max

{
λ

n,k,i
h , 0

}
and λ

n,k,i,neg
h = min

{
λ

n,k,i
h , 0

}
.

We also introduce a potential s̃k,i
hτ :=

(
s̃k,i

1,hτ , s̃k,i
2,hτ

)
∈ Kt

g as a piecewise affine and continuous function in time

over the whole time interval ]0, T [, verifying s̃k,i
1,hτ (t) − s̃k,i

2,hτ (t) ≥ 0 for all t ∈ ]0, T [.

Remark 4.8. A possible construction for s̃k,i
hτ ∈ Kt

g can be derived from the stationary version presented in [28,
Sec. 5.2]. We recall the main ingredients here. First, construct sn,k,i

h ∈ Kp
gh at each node xl ∈ V p,i by

sn,k,i
h (xl) :=

⎧⎪⎨⎪⎩
un,k,i

h (xl) =

(
un,k,i

1h (xl), un,k,i
2h (xl)

)
if un,k,i

1h (xl) ≥ un,k,i
2h (xl),(

1
2

(
un,k,i

1h + uk,i
2h

)
(xl),

1
2

(
un,k,i

1h + uk,i
2h

)
(xl)

)
else.

(4.27)

For p = 1, this gives sn,k,i
1h ≥ sn,k,i

2h everywhere, so we can set s̃n,k,i
h := sn,k,i

h .
For p ≥ 2, imposing sn,k,i

1h (xl) ≥ sn,k,i
2h (xl) in the Lagrange nodes is not sufficient to have sn,k,i

1h ≥ sn,k,i
2h . So, we

add to sn,k,i
1h −sn,k,i

2h bubble functions, first on all edges, then on all triangles. This builds s̃n,k,i
h such that s̃n,k,i

1h ≥ s̃n,k,i
2h ,

and we define s̃n,k,i
hτ from s̃n,k,i

h as its corresponding space–time (affine-in-time) function.

Definition 4.9. Let CΩ,µ := hΩCPF

(
1
µ1

+
1
µ2

) 1
2 . For all 1 ≤ n ≤ Nt, we define the error estimators

η
n,k,i
R,K ,α(t) := hΩCPFµ

−
1
2

α

 f̃ n
α − ∂t s̃

n,k,i
αhτ − ∇·σ

n,k,i
αh − (−1)αλn,k,i

h


K

(t),

η
n,k,i
F,K ,α(t) :=

µ 1
2
α∇s̃n,k,i

αhτ + µ
−

1
2

α σ
n,k,i
αh


K

(t),

η
n,k,i,pos
C,K (t) := 2

(
λ

n,k,i,pos
h , un,k,i

1hτ − un,k,i
2hτ

)
K

(t),

η
n,k,i
nonc,1,K (t) := CΩ,µ

λn,k,i,neg
h


K

(t),

η
n,k,i
nonc,2,K (t) :=

⏐⏐⏐⏐⏐⏐⏐⏐⏐s̃n,k,i
hτ − un,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
K

(t),

η
n,k,i
nonc,3,K (t) := 2

(
λ

n,k,i,pos
h ,

(
s̃n,k,i

1hτ − un,k,i
1hτ

)
−

(
s̃n,k,i

2hτ − un,k,i
2hτ

))
K

(t),

ηn
osc,K ,α(t) := CPFhΩµ

−
1
2

α

 fα − f̃ n
α


K
.

We observe that the estimators given by Definition 4.9 are slightly different from the ones provided in
Definition 4.1. Indeed, in the estimators ηn,k,i

R,K ,α and ηn,k,i
F,K ,α , there appears s̃n,k,i

αhτ in place of un,k,i
αhτ , and hΩ instead

of hK . The constraint estimator ηn,k,i,pos
C,K is as in Definition 4.1 (remember that λn

h ≥ 0 at convergence for p = 1)

and expresses that λn,k,i
h

(
un,k,i

1hτ − un,k,i
2hτ

)
= 0 is not valid everywhere. Next, ηn,k,i

nonc,1,K , ηn,k,i
nonc,2,K , and ηn,k,i

nonc,3,K are
nonconformity estimators expressing the possible negativity of the discrete Lagrange multiplier and measuring how
far the potential reconstruction s̃n,k,i

hτ is from the displacements un,k,i
hτ , i.e. the violation of the constraint un,k,i

1hτ ≥ un,k,i
2hτ .

Theorem 4.10 (Case p ≥ 1 and Inexact Solvers). Let u ∈ Kt
g be the exact solution given by (1.2) and let uk,i

hτ /∈ Kt
g

be the approximate solution issued from inexact linearization step k ≥ 1 and algebraic solvers step i ≥ 0 at each
time step 1 ≤ n ≤ Nt. Consider the total equilibrated flux reconstruction σ

k,i
αhτ ∈ L2(0, T,H(div,Ω )) given by (4.4)
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and (4.6). Let s̃k,i
hτ ∈ Kt

g and consider the estimators of Definition 4.9. Then, for

(
ηk,i)2

:=

⎛⎜⎝
⎧⎨⎩

Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
η

n,k,i
R,K ,α

)2
(t) dt

⎫⎬⎭
1
2

+

⎧⎨⎩
Nt∑

n=1

∫
In

∑
K∈Th

2∑
α=1

(
η

n,k,i
F,K ,α

)2
(t) dt

⎫⎬⎭
1
2

+

⎧⎨⎩
Nt∑

n=1

∫
In

∑
K∈Th

(
η

n,k,i
nonc,1,K

)2
(t) dt

⎫⎬⎭
1
2

+

⎧⎨⎩
Nt∑

n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn

osc,K ,α

)2 (t) dt

⎫⎬⎭
1
2
⎞⎟⎠

2

+

Nt∑
n=1

∫
In

∑
K∈Th

η
n,k,i,pos
C,K (t) dt +

Nt∑
n=1

∫
In

∑
K∈Th

η
n,k,i
nonc,3,K (t) dt +

(u − s̃n,k,i
hτ

)
(·, 0)

2

Ω
,

we have the a posteriori error estimate

⏐⏐⏐⏐⏐⏐⏐⏐⏐u − uk,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

≤ η̃k,i
:= ηk,i

+

⎧⎨⎩
Nt∑

n=1

∫
In

∑
K∈Th

(
η

n,k,i
nonc,2,K

)2
(t) dt

⎫⎬⎭
1
2

. (4.28)

Proof. We start by the triangle inequality, leading to⏐⏐⏐⏐⏐⏐⏐⏐⏐u − uk,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

≤

⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃k,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

+

⏐⏐⏐⏐⏐⏐⏐⏐⏐s̃k,i
hτ − uk,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

. (4.29)

The second term of (4.29) immediately equals to⏐⏐⏐⏐⏐⏐⏐⏐⏐s̃k,i
hτ − uk,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Ω,T

=

Nt∑
n=1

∫
In

∑
K∈Th

(
η

n,k,i
nonc,2,K

)2
(t) dt. (4.30)

Next, observe that⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃k,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Ω,T

≤

⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃k,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Ω,T

+
1
2

(u − s̃k,i
hτ

)
(·, T )

2

Ω
.

Employing the fact that

1
2

(u − s̃k,i
hτ

)
(·, T )

2

Ω
=

1
2

(u − s̃k,i
hτ

)
(·, 0)

2

Ω
+

∫ T

0

⟨
∂t

(
u − s̃k,i

hτ

)
, u − s̃k,i

hτ

⟩
(t) dt,

we have⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃k,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Ω,T

≤

2∑
α=1

∫ T

0
µα

(
∇

(
uα − s̃k,i

αhτ

)
,∇

(
uα − s̃k,i

αhτ

))
Ω

(t) dt

+

2∑
α=1

∫ T

0

⟨
∂t

(
uα − s̃k,i

αhτ

)
, uα − s̃k,i

αhτ

⟩
(t) dt +

1
2

(u − s̃k,i
hτ

)
(·, 0)

2

Ω
.

We now use the weak formulation (1.2) with v = s̃k,i
hτ ∈ Kt

g and we add and subtract
∑2

α=1

∫ T
0

(
f̃ n
α , uα− s̃k,i

αhτ

)
Ω

(t) dt
to get ⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Ω,T

≤

2∑
α=1

∫ T

0

(
f̃ n
α − ∂t s̃

k,i
αhτ , uα − s̃k,i

αhτ

)
Ω

(t) −

2∑
α=1

∫ T

0
µα

(
∇s̃k,i

αhτ ,∇
(

uα − s̃k,i
αhτ

))
Ω

(t) dt

+

∫ T

0

(
f − f̃

n
, u − s̃k,i

hτ

)
Ω

(t) dt +
1
2

(u − s̃k,i
hτ

)
(·, 0)

2

Ω
.
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Adding and subtracting
∑2

α=1

∫ T
0

(
(−1)αλk,i

hτ , uα − s̃k,i
αhτ

)
Ω

(t) dt and
∑2

α=1

∫ T
0

(
σ

k,i
αhτ ,∇

(
uα − s̃k,i

αhτ

))
Ω

(t) dt, and

using the Green formula with σ
k,i
αhτ ∈ L2(0, T ; H(div,Ω )) and

(
uα − s̃k,i

αhτ

)
(t) ∈ H 1

0 (Ω ) a.e. t ∈ ]0, T [, we obtain⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃k,i
hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
Ω,T

≤ A1 + A2 + A3 + A4 +
1
2

(u − s̃k,i
hτ

)
(·, 0)

2

Ω
(4.31)

with

A1 :=

2∑
α=1

∫ T

0

(
f̃ n
α − ∂t s̃

k,i
αhτ − ∇·σ

k,i
αhτ − (−1)αλk,i

hτ , uα − s̃k,i
αhτ

)
Ω

(t) dt,

A2 := −

2∑
α=1

∫ T

0

(
µ

1
2
α∇s̃k,i

αhτ + µ
−

1
2

α σ
k,i
αhτ , µ

1
2
α∇

(
uα − s̃k,i

αhτ

))
Ω

(t) dt,

A3 :=

2∑
α=1

∫ T

0

(
(−1)αλk,i

hτ , uα − s̃k,i
αhτ

)
Ω

(t) dt,

A4 :=

2∑
α=1

∫ T

0

(
fα − f̃ n

α , uα − s̃k,i
αhτ

)
Ω

(t) dt.

(4.32)

To bound A1, A2, and A4 we proceed as follows. We apply the Cauchy–Schwarz inequality and next the
Poincaré–Friedrichs inequality (4.11a) to get

A1 ≤

⎛⎝ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
η

n,k,i
R,K ,α

)2
(t) dt

⎞⎠ 1
2 ⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃n,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

, (4.33)

A2 ≤

⎛⎝ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
η

n,k,i
F,K ,α

)2
(t) dt

⎞⎠ 1
2 ⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃n,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

, (4.34)

A4 ≤

⎛⎝ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn

osc,K ,α

)2 (t) dt

⎞⎠ 1
2 ⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃n,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

. (4.35)

It remains to bound the term A3. Observe that

A3 = −

∫ T

0
b(u − s̃k,i

hτ , λ
k,i,neg
hτ )(t) dt −

∫ T

0
b(u − s̃k,i

hτ , λ
k,i,pos
hτ )(t) dt.

Next, adding and subtracting b(uk,i
hτ , λ

k,i,pos
hτ ) and noting that −b(u, λk,i,pos

hτ ) ≤ 0 since u ∈ Kt
g and λk,i,pos

hτ (t) ≥ 0 for
all t ∈ ]0, T [, we have

A3 ≤ A31 + A32 + A33

with A31 := −

∫ T

0
b(u − s̃k,i

hτ , λ
k,i,neg
hτ )(t) dt, A32 :=

∫ T

0
b(s̃k,i

hτ − uk,i
hτ , λ

k,i,pos
hτ )(t) dt, A33 :=

∫ T

0
b(uk,i

hτ , λ
k,i,pos
hτ )(t) dt.

The Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality (4.11a) yield

A31 ≤

⎛⎝ Nt∑
n=1

∫
In

∑
K∈Th

(
η

n,k,i
nonc,1,K

)2
(t) dt

⎞⎠ 1
2 ⏐⏐⏐⏐⏐⏐⏐⏐⏐u − s̃n,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

. (4.36)

Next, we have

A32 =
1
2

Nt∑
n=1

∫
In

∑
K∈Th

η
n,k,i
nonc,3,K (t) dt, A33 =

1
2

Nt∑
n=1

∫
In

∑
K∈Th

η
n,k,i,pos
C,K (t) dt. (4.37)
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Finally, combining (4.31)–(4.37), employing the Young inequality ab ≤
1
2

(
a2

+ b2
)
, (a, b) ≥ 0, and using (4.30)

provides the desired result. □

5. Error components and adaptive inexact algorithm

In Section 4.5, we have derived an a posteriori error estimate between the exact solution and the approximate
solution at each semismooth Newton step k ≥ 1 and each algebraic iterative solver step i ≥ 0. We now provide
an a posteriori error estimate distinguishing the different error components (discretization η

n,k,i
disc , semismooth

linearization ηn,k,i
lin , and linear algebra ηn,k,i

alg ) for any p ≥ 1. To identify these components, we note that ηn,k,i
alg

must vanish when i → ∞, ηn,k,i
lin must vanish when i and k → ∞, and ηn,k,i

disc must vanish when i, k → ∞ and h
and ∆t → 0. The components are adapted from the ideas of [28, Sec. 5.4]. This will allow us to define the adaptive
inexact semismooth Newton algorithm for instationary variational inequalities.

5.1. Distinguishing the error components for p ≥ 1

Let n ∈ {1, . . . , Nt}. In this section, the dependency on the time variable is not shown explicitly. First, using (4.4),
the triangle inequality reads

η
n,k,i
F,K ,α ≤

µ 1
2
α∇s̃n,k,i

αhτ + µ
−

1
2

α σ
n,k,i
αh,disc


K  

discretization

+

µ−
1
2

α σ
n,k,i
αh,alg


K  

algebraic

, (5.1)

which separates the algebraic and discretization contributions of the error. Define

η
n,k,i
disc,F,K ,α :=

µ 1
2
α∇s̃n,k,i

αhτ + µ
−

1
2

α σ
n,k,i
αh,disc


K
, η

n,k,i
alg,K ,α :=

µ−
1
2

α σ
n,k,i
αh,alg


K
. (5.2)

Case p = 1: let β ∈ {1, 2, 3}. The estimators ηn,k,i
nonc,β,K can be interpreted as semismooth linearization estimators.

Indeed, at convergence for k and i → ∞, λn,k,i,pos
h = λn

h ∈ Λ, λn,k,i,neg
h = 0, and s̃n,k,i

h = un
h ∈ Kg . Thus ηn,k,i

nonc,β,K
vanish at convergence, and we can set:

η
n,k,i
lin,β,K := η

n,k,i
nonc,β,K for β = 1, 2, 3 when p = 1. (5.3)

The estimators ηn,k,i,pos
C,K are attributed to the discretization component, as they vanish only when h,∆t → 0.

Case p ≥ 2: the procedure is more intricate. We employ the triangle inequality and the construction of
Remark 4.8 to get

η
n,k,i
nonc,2,K ≤

⏐⏐⏐⏐⏐⏐⏐⏐⏐s̃n,k,i
hτ − sn,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
K  

discretization

+

⏐⏐⏐⏐⏐⏐⏐⏐⏐sn,k,i
hτ − un,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
K  

linearization

. (5.4)

The first term in (5.4) vanishes assuming uk,i
hτ → u ∈ Kt

g , when h,∆t → 0 and k, i → ∞. Using (4.27), the
second term vanishes when k and i → ∞. Next, using (4.26), we treat the estimators ηn,k,i,pos

C,K ,∑
K∈Th

η
n,k,i,pos
C,K = 2

(
−λ

n,k,i,neg
h , un,k,i

1hτ − un,k,i
2hτ

)
Ω  

discretization

+2
(
λ

n,k,i
h , un,k,i

1hτ − un,k,i
2hτ − (un,k,i

1h − un,k,i
2h )

)
Ω  

discretization

+ 2
(
λ

n,k,i
h , un,k,i

1h − un,k,i
2h

)
Ω  

linearization

.

(5.5)

The first two terms of (5.5) are discretization estimators, as the first vanishes assuming that λk,i
hτ → λ ∈ Ψ ,

when h,∆t → 0, and k, i → ∞, and the second vanishes when ∆t → 0, and k, i → ∞. By virtue of (3.9)
and (3.4), the third term of (5.5) is a linearization estimator, as it vanishes when k, i → ∞. Next, we decompose
λ

n,k,i
h = λ̃

n,k,i,pos
h + λ̃

n,k,i,neg
h , with

λ̃
n,k,i,pos
h :=

N p,i∑
l=1

max
{(

Xn,k,i
3h

)
l , 0
}
Θh,xl , λ̃

n,k,i,neg
h :=

N p,i∑
l=1

min
{(

Xn,k,i
3h

)
l , 0
}
Θh,xl ,
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so that λ̃n,k,i,pos
h and −λ̃

n,k,i,neg
h ∈ Λ

p
h (recall that λk,i,pos

h , λ
k,i,neg
h ̸∈ X p

h in general, since they are not piecewise

polynomials), and

η
n,k,i
nonc,1,K ≤ CΩ,µ

(λn,k,i,neg
h − λ̃

n,k,i,neg
h


K  

discretization

+

λ̃n,k,i,neg
h


K  

linearization

)
, (5.6)

where λ̃n,k,i,neg
h → 0 when k, i → ∞, and λn,k,i,neg

h → 0 when h → 0. Finally, similarly to (5.4), the term η
n,k,i
nonc,3,K

is decomposed into two components, one with sn,k,i
αhτ − un,k,i

αhτ , the other with s̃n,k,i
αhτ − sn,k,i

αhτ .

Regrouping this last term and (5.4)–(5.6), we define the semismooth linearization estimators for p ≥ 2

η
n,k,i
lin,1,K := CΩ,µ

λ̃n,k,i,neg
h


K
, η

n,k,i
lin,2,K :=

⏐⏐⏐⏐⏐⏐⏐⏐⏐sn,k,i
hτ − un,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
K
,

η
n,k,i
lin,3,K := 2

(
λ

n,k,i,pos
h , sn,k,i

1hτ − un,k,i
1hτ − (sn,k,i

2hτ − un,k,i
2hτ )

)
K
, η

n,k,i
lin,C,K := 2

(
λ

n,k,i
h , un,k,i

1h − un,k,i
2h

)
K
.

(5.7)

We also define the discretization estimators for p ≥ 2

η
n,k,i
disc,1,K := CΩ,µ

λn,k,i,neg
h − λ̃

n,k,i,neg
h


K
, η

n,k,i
disc,2,K :=

⏐⏐⏐⏐⏐⏐⏐⏐⏐s̃n,k,i
hτ − sn,k,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
K
,

η
n,k,i
disc,3,K := 2

(
λ

n,k,i,pos
h , s̃n,k,i

1hτ − sn,k,i
1hτ − (s̃n,k,i

2hτ − sn,k,i
2hτ )

)
K
,

η
n,k,i
disc,C,K := 2

(
−λ

n,k,i,neg
h , un,k,i

1hτ − un,k,i
2hτ

)
K

+ 2
(
λ

n,k,i
h , un,k,i

1hτ − un,k,i
2hτ − (un,k,i

1h − un,k,i
2h )

)
K
.

(5.8)

Definition 5.1. Using (5.2), (5.3) for p = 1, and (5.2), (5.7), (5.8) for p ≥ 2, we define the initial error

estimator ηinit, the local-in-time algebraic error estimator ηn,k,i
alg , the local-in-time discretization error estimator ηn,k,i

disc ,
and the local-in-time semismooth linearization error estimator ηn,k,i

lin , respectively, by (5.9), (5.10) for p = 1, and

(5.9), (5.11) for p ≥ 2.

ηinit :=

(u − s̃k,i
hτ

)
(·, 0)


Ω
. (5.9)

Case p = 1:

η
n,k,i
disc :=

⎧⎨⎩
∫

In

∑
K∈Th

(
5

[
2∑
α=1

(
η

n,k,i
R,K ,α

)2
+

(
η

n,k,i
disc,F,K ,α

)2
+
(
ηn

osc,K ,α

)2

]
+

⏐⏐⏐ηn,k,i,pos
C,K

⏐⏐⏐)(t) dt

⎫⎬⎭
1
2

,

η
n,k,i
lin :=2

1
2

⎧⎨⎩
∫

In

∑
K∈Th

(
5
(
η

n,k,i
lin,1,K

)2
+

(
η

n,k,i
lin,2,K

)2
+

⏐⏐⏐ηn,k,i
lin,3,K

⏐⏐⏐) (t) dt

⎫⎬⎭
1
2

,

η
n,k,i
alg :=

⎧⎨⎩5∆tn
∑

K∈Th

2∑
α=1

(
η

n,k,i
alg,K ,α

)2

⎫⎬⎭
1
2

.

(5.10)
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Case p ≥ 2:

η
n,k,i
disc := 2

1
2

⎧⎨⎩
∫

In

∑
K∈Th

[
2∑
α=1

6
((
η

n,k,i
R,K ,α

)2
+

(
η

n,k,i
disc,F,K ,α

)2
+
(
ηn

osc,K ,α

)2
)

+6
(
η

n,k,i
disc,1,K

)2
+

(
η

n,k,i
disc,2,K

)2
+

⏐⏐⏐ηn,k,i
disc,3,K

⏐⏐⏐+ ⏐⏐⏐ηn,k,i
disc,C,K

⏐⏐⏐ ] (t) dt
} 1

2
,

η
n,k,i
lin := 2

1
2

⎧⎨⎩
∫

In

∑
K∈Th

[
6
(
η

n,k,i
lin,1,K

)2
+

(
η

n,k,i
lin,2,K

)2
+

⏐⏐⏐ηn,k,i
lin,3,K

⏐⏐⏐+ ⏐⏐⏐ηn,k,i
lin,C,K

⏐⏐⏐] (t) dt

⎫⎬⎭
1
2

,

η
n,k,i
alg :=

⎧⎨⎩6∆tn
∑

K∈Th

2∑
α=1

(
η

n,k,i
alg,K ,α

)2

⎫⎬⎭
1
2

.

(5.11)

For β ∈ {disc, lin, alg}, we introduce global-in-time estimators denoted by ηk,i
β :=

(∑Nt
n=1

(
η

n,k,i
β

)2
) 1

2
. Using

Definition 5.1, we have:

Corollary 5.2 (Case p ≥ 1 and Inexact Solvers). For p ≥ 1, we have the following a posteriori error estimate
distinguishing the error components:⏐⏐⏐⏐⏐⏐⏐⏐⏐u − uk,i

hτ

⏐⏐⏐⏐⏐⏐⏐⏐⏐
Ω,T

≤ η
k,i
disc + η

k,i
lin + η

k,i
alg + ηinit.

Proof. Using (4.28) and (5.1)–(5.8), employing Definition 5.1, the Minkowski inequality, the Cauchy–Schwarz
inequality, and the inequality (A + B)

1
2 ≤ A

1
2 + B

1
2 for A and B ≥ 0 to gather the terms, we obtain the desired

result. □

5.2. Adaptive inexact semismooth Newton algorithm

We finally present our adaptive inexact semismooth Newton algorithm. Following the concept of [28,46], it is
designed to only perform the linearization and algebraic resolutions with minimal necessary precision, and thus to
avoid unnecessary iterations, on the basis of the energy error a posteriori estimators of Definition 5.1. Let γlin and
γalg be two positive parameters, typically of order 0.1, representing the desired relative sizes of the algebraic and
linearization errors. Supposing that ηinit is negligible, we summarize it in Algorithm 1.

6. Numerical experiments

This section illustrates numerically our theoretical developments in the case of linear and quadratic finite elements
p = 1 and p = 2. We first assume p = 1 and that the semismooth Newton solver and the iterative algebraic solver
have converged, i.e., we apply the “exact semismooth Newton” method as described in Section 3.7, using stopping
criteria (3.18) and (3.19) with εk

alg = 10−11
∀k ≥ 1 and εlin = 10−9. In this scenario, the semismooth Newton index

k and the linear iterative algebraic solver index i will be discarded. We extend to the parabolic setting the test case
given in [36] in which the domain Ω is given by the unit disk: Ω := {(r, θ) ∈ [0, 1] × [0, 2π ]}. We are interested
in the shape of the numerical solution after several time steps and in the behavior of the estimators at convergence
of the solvers given by Theorem 4.3.

Second, we will focus on our adaptive inexact semismooth Newton strategy given by Algorithm 1, based on
Theorem 4.10 and Corollary 5.2. For this purpose, we will consider the geometry given in the first test case with
different source terms. We will test our adaptive strategy with two semismooth Newton solvers: the Newton-min
solver (see (3.13a)) with p = 1 and p = 2, and the Newton–Fischer–Burmeister solver (see (3.13c)) with p = 1
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Algorithm 1 Adaptive inexact semismooth Newton algorithm at each time step n ≥ 1

0. Choose an initial vector Xn,0
h ∈ R3N p,i

, typically as Xn−1
h , and set k := 1.

1. From Xn,k−1
h define An,k−1

∈ R3N p,i,3N p,i
and Bn,k−1

∈ R3N p,i
by (3.16).

2. Consider the linear system

An,k−1 Xn,k
h = Bn,k−1. (5.12)

3. Set Xn,k,0
h := Xn,k−1

h (initial guess for the linear solver), set i := 0.
4a. Perform ν ≥ 1 steps of a chosen linear solver for (Eq. (5.12)), starting from Xn,k,i

h . Set i := i + ν.
This yields on step i an approximation Xn,k,i

h satisfying

An,k−1 Xn,k,i
h = Bn,k−1

− Rn,k,i .

4b. Compute the estimators of (5.10) or (5.11) and check the stopping criterion for the linear solver in
the form:

η
n,k,i
alg ≤ γalg max

{
η

n,k,i
disc , η

n,k,i
lin

}
. (5.13)

If satisfied, set Xn,k
h := Xn,k,i

h . If not go back to 4a.
5. Check the stopping criterion for the nonlinear solver in the form

η
n,k,i
lin ≤ γlinη

n,k,i
disc . (5.14)

If satisfied, return Xn
h := Xn,k

h . If not, set k := k + 1 and go back to 1.

only. We rely on the stopping criteria (5.13) and (5.14) with γlin = γalg = 10−3 for the adaptive inexact semismooth
Newton strategy. The approaches with the exact Newton method and with the adaptive inexact Newton method
are compared. The iterative algebraic solver that we employ at each semismooth Newton step k ≥ 1 is GMRES
(see [48]) with an ILU preconditioner with zero level fill-in.

For all the studies, the parameters µ1 and µ2 are set to 1 and the boundary condition for the first unknown g is
equal to 0.05. We take a constant time step ∆tn = ∆t = 0.001 for all 1 ≤ n ≤ Nt = 300, and the final time of
simulation is T = 0.3. The initial value is (X0

h)T
= [g1, 0, 0]T

∈ R3N p,i
. For p = 1, we consider a mesh containing

approximately 21000 elements, and for p = 2 a mesh with 4000 elements.

6.1. Exact semismooth Newton method for p = 1

Following [36], we take a constant-in-time source term

f1(r, θ, t) :=

{
−10g if r ≤ 1/

√
2,

−8g if r ≥ 1/
√

2,
and f2(r, θ, t) :=

⎧⎪⎨⎪⎩
−6g if r ≤ 1/

√
2,

−g
1 + 8r − 18r2

r

√
2

√
2 − 1

if r ≥ 1/
√

2.

In this case, fα|In = f̃ n
α , so the data oscillation estimator ηn

osc,α is zero.
In this section, we use linear finite elements (p = 1). Fig. 1 displays the behavior of the numerical solution

(un
1h, un

2h, λ
n
h) at three instants tn = 0.02, tn = 0.17, and tn = 0.3. In the first situation, corresponding to the

beginning of the simulation tn = 0.02 (first line of Fig. 1), the complementarity constraint un
1h − un

2h > 0 is
satisfied, and the discrete Lagrange multiplier λn

h vanishes. Next, at the time value tn = 0.17, un
1h and un

2h coincide
in a subset of Ω . Finally, at the end of the simulation (tn = 0.3, last line of Fig. 1) the discrete Lagrange multiplier
λn

h is positive in the whole area r ≤
1

√
2
, recovering the numerical result of the stationary case [36].

In Fig. 2, the constraint estimator ηn
C,K (tn) (4.9) is plotted at tn = 0.17, and tn = 0.3 (it is 0 at tn = 0.02). It

detects at each time step the elements where un
1h and un

2h become in contact (or detach one from another). We note
that the constraint estimator ηn

C,K (tn) takes very small values.
Fig. 3 displays the behavior of the flux estimator ηn

F,K ,2(tn) (4.8) and of the residual estimator ηn
R,K ,2(tn) (4.7)

(see Theorem 4.3) associated to the second discrete unknown un
2h at the final simulation time tn = T = 0.3. We
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Fig. 1. Numerical solution un
1h and un

2h (left column) and λn
h (right column) at convergence for approximately 21 000 elements with p = 1.

Time values from top to bottom: tn = 0.02, tn = 0.17, and tn = 0.3.

Fig. 2. Constraint estimators ηn
C,K at convergence for approximately 21 000 elements with p = 1, at times tn = 0.17 (left) and tn = 0.3

(right).
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Fig. 3. Estimators at convergence for approximately 21 000 elements at tn = 0.3 with p = 1. Left: flux estimator ηn
F,K ,2. Right: residual

estimator ηn
R,K ,2.

observe that the residual estimator ηn
R,K ,2(tn) is small with respect to the flux estimator ηn

F,K ,2(tn). Furthermore, in
several elements K ∈ Th , the estimator ηn

F,K ,2(tn) is quite large which corresponds to zones where the finite element
discretization error is important.

6.2. Comparison of exact and adaptive inexact semismooth Newton algorithms

The domain Ω is still the unit disk, and the data f1 and f2 are still time-independent and given by

f1(r, θ, t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−20g if r ≤ 1/5,
−50g if 1/5 ≤ r ≤ 2/5,
+50g if 2/5 ≤ r ≤ 3/5,
−50g if 3/5 ≤ r ≤ 4/5,
+50g if 4/5 ≤ r ≤ 1,

f2(r, θ, t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+90g if r ≤ 1/5,
−40g if 1/5 ≤ r ≤ 2/5,
+70g if 2/5 ≤ r ≤ 3/5,
−30g if 3/5 ≤ r ≤ 4/5,
+40g if 4/5 ≤ r ≤ 1.

Here again ηn
osc,α vanishes.

First of all, we display for several time steps the behavior of the numerical solution. Next, for a fixed time value,
we present the estimators as a function of the Newton iterations. Furthermore, for one selected Newton iteration, we
also present the evolution of the various estimators as a function of the GMRES iterations. Finally, we test for each
adaptive inexact semismooth Newton solver its overall performance and we compare the results with the classical
exact resolution.

Fig. 4 displays the numerical solution at three time values when the Newton-min solver and GMRES solver have
converged. There are three different phases in the simulation: at first, there is no contact, see the first line of Fig. 4.
In the second phase, the contact occurs in a disk around the center of the domain and we observe in the discrete
Lagrange multiplier λn

h a peak indicating the elements where un
1h and un

2h coincide. In the last phase (last line of
Fig. 4), there exist two separate contact zones, a disk for 0 ≤ r ≤ 1/5 and a ring for 2/5 ≤ r ≤ 3/5. These contacts
occur at t ≈ 0.011 and t ≈ 0.060; we will see below in Figs. 6 and 9 (left) that more Newton-min iterations will
be required at these transition periods.

6.2.1. Newton-min linearization with p = 1
We present in this section some results for the adaptive inexact Newton-min Algorithm 1, taking the min

C-function (3.13a), and using linear finite elements.
Fig. 5 presents the evolution of the various estimators as a function of the Newton-min iterations (left), and as

a function of the GMRES iterations at the first Newton-min step (right), both at the fixed time value tn = 0.084.
From the left part of Fig. 5, we observe that the discretization estimator globally dominates and coincides with the
total estimator (the two curves are roughly superimposed). The linearization estimator (blue curve) is small from
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Fig. 4. Numerical solutions un
1h and un

2h (left column) and λn
h (right column) at convergence for approximately 21 000 elements with p = 1.

Time values from top to bottom tn = 0.001, tn = 0.03, and tn = 0.3.

Fig. 5. At tn = 0.084 with p = 1. Left: estimators as a function of the Newton-min iterations. Right: estimators as a function of the GMRES
iterations on the 1st Newton-min iteration.

the first Newton-min iteration (around 10−6) and next increases at the second iteration (around 10−3) and afterwards
decreases rapidly to reach the value 10−11 at the third Newton-min iteration. From the first Newton-min iteration,
the discretization estimator (coinciding with the total estimator) stagnates which means that the other components



26 J. Dabaghi, V. Martin and M. Vohralı́k / Computer Methods in Applied Mechanics and Engineering 367 (2020) 113105

Fig. 6. Case p = 1. Left: number of Newton-min iterations at each time step. Right: cumulated number of Newton-min iterations as a
function of time.

Table 1
Accuracy of the adaptive inexact Newton-min solution for several time values (p = 1).

γalg = γlin = 10−3 tn = 0.001 tn = 0.011 tn = 0.07 tn = 0.15 tn = 0.3µ 1
2
1 ∇(un,exact

1h −un,adapt
1h )


Ω

1.4 × 10−7 1.8 × 10−7 8.8 × 10−8 2 × 10−7 3.4 × 10−7

µ 1
2
2 ∇(un,exact

2h −un,adapt
2h )


Ω

1.3 × 10−7 1.6 × 10−7 8.8 × 10−8 1.7 × 10−7 3.4 × 10−7

λn,exact
h −λ

n,adapt
h


Ω

0 2.8 × 10−4 3.2 × 10−4 4.3 × 10−4 8.1 × 10−8

of the error do not influence the behavior of the total error estimator. Then, the Newton-min algorithm performs
unnecessary iterations and can be stopped at the first iteration. In right part of Fig. 5, we test our adaptive inexact
Newton-min strategy in terms of the GMRES iterations for the first Newton-min iteration. We observe that the
discretization and linearization estimators roughly stagnate after few iterations. The algebraic estimator is large at
the beginning of the iterations and influences the behavior of the total estimator but decreases rapidly to reach at
i = 53 the value 10−12. The adaptive inexact Newton-min algorithm stops the GMRES after i = 24 iterations, when
the total estimator almost coincides with the discretization estimator. Note that the curve of the algebraic estimator
is here close to the curve of the norm

Rn,k,i
h

 of the algebraic residual vector from (3.17).
Fig. 6 provides the number of Newton-min iterations and the cumulated number of Newton-min iterations

required to satisfy the given stopping criteria at each time step of the simulation. In particular, the first graph shows
that for almost all time steps, our adaptive strategy is cheaper in terms of Newton-min iterations than the exact
resolution. Observe that at some (rare) time steps (13 and 57 for instance), the adaptive approach requires more
iterations than the classical resolution: it detects automatically when a few more iterations are necessary to preserve
the accuracy. Interestingly, this occurs at times when un

1h and un
2h enter in contact. The second graph presents the

cumulated number of Newton-min iterations as a function of the time step. We observe a substantial benefit for our
adaptive inexact Newton-min approach as it saves at the end of the simulation roughly 50% of the iterations.

In Fig. 7, left, we plot the number of GMRES iterations per time and Newton-min steps, between time steps 22
and 72. We can observe that significantly fewer iterations are needed in the adaptive approach. We illustrate the
overall performance of the two approaches in Fig. 7, right, where we display the cumulated number of GMRES
iterations for the two methods as a function of the time steps. The second graph shows that the adaptive inexact
Newton-min algorithm requires approximately 7000 cumulated iterations to converge whereas the classical algorithm
requires roughly 19 000 iterations. Our adaptive algorithm thus saves many unnecessary iterations.

In Table 1, we give the global energy norm of the difference between the approximate solution given by the exact
and by the adaptive inexact Newton-min algorithms. We observe that for several time values, the three numerical
solutions are close to each other, which confirms that our adaptive strategy does not degrade the accuracy of the
numerical solution.
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Fig. 7. Case p = 1. Left: number of GMRES iterations per time and Newton-min steps. Right: cumulated number of GMRES iterations as
a function of time.

Fig. 8. Case p = 1. At tn = 0.11. Left: estimators as a function of the Newton–FB iterations. Right: estimators as a function of the GMRES
iterations at the first Newton–FB step.

6.2.2. Newton–Fischer–Burmeister linearization with p = 1
In this section, we proceed as in Section 6.2.1, employing this time the C-function of Fischer–Burmeister (3.13c).
Fig. 8 represents the evolution of the various estimators as a function of the Newton–Fischer–Burmeister

(denoted Newton–FB in the sequel) iterations (left), and as a function of the GMRES iterations at the first Newton–
FB step (right), both at the time value tn = 0.011. From the left plot, we observe that the discretization estimator
globally dominates and almost coincides with the total estimator (the two curves are roughly superimposed). The
linearization estimator is small and decreases rapidly after k = 5 steps (adaptive stopping criterion) to reach the value
of 10−11 at k = 11 (classical stopping criterion). Taking γlin = 10−2 instead of γlin = 10−3 in (5.14) will reduce the
number of Newton–FB iterations at this instant to merely 4 iterates. In the right plot, we take the first Newton–FB
iteration and we observe that the discretization and the linearization estimators stagnate from the beginning of the
algebraic iterations, while the algebraic estimator is dominant at the beginning. The adaptive inexact Newton–FB
algorithm stops the GMRES iterations at i = 9, whereas the classical criterion stops at i = 33. Note that, like in
the Newton-min case, the behavior of the algebraic estimator follows here closely the one of the algebraic residual.

Fig. 9 focuses on the number of Newton–FB iterations required to satisfy the various stopping criteria at each
time step. We observe from the first figure that the adaptive strategy (red curve) is economic in comparison with the
classical resolution especially from tn = 0.1 onwards, where the adaptive algorithm requires 1 Newton–FB iteration
at each time step. Furthermore, the right plot depicts the overall performance in terms of Newton–FB iterations.
With no surprise, the adaptive resolution requires at the end of the simulation much fewer semismooth Newton
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Fig. 9. Case p = 1. Left: number of Newton–FB iterations at each time step. Right: cumulated number of Newton–FB iterations as a
function of time.

Fig. 10. Case p = 1. Left: number of GMRES iterations per time and Newton–FB step. Right: cumulated number of GMRES iterations per
time step.

Table 2
Accuracy of the adaptive inexact Newton–FB solution for several time values (p = 1).

γalg = γlin = 10−3 tn = 0.001 tn = 0.011 tn = 0.07 tn = 0.15 tn = 0.3µ 1
2
1 ∇(un,exact

1h −un,adapt
1h )


Ω

9.9 × 10−6 1.7 × 10−5 5.8 × 10−5 7.7 × 10−5 2.1 × 10−3

µ 1
2
2 ∇(un,exact

2h −un,adapt
2h )


Ω

5.5 × 10−6 2.1 × 10−5 7.1 × 10−5 1.8 × 10−4 2.1 × 10−3

λn,exact
h −λ

n,adapt
h


Ω

0 7.9 × 10−3 3.3 × 10−4 2.3 × 10−2 2.2 × 10−7

iterations (approximately 700 for the adaptive algorithms and 1500 for the classical resolution). Thus, our adaptive
semismooth approach reduces by roughly 50% the number of Newton–FB iterations.

Fig. 10 illustrates the overall performance of the two approaches. We display the number of GMRES iterations
for each linear system solved as a function of time/Newton–FB step between tn = 0.014 and tn = 0.057 (left) and
the cumulated number of GMRES iterations as a function of time step (right). We see that our adaptive strategy is
very economic in terms of the total algebraic iterations, as it requires at the end of the simulation approximately
7000 iterations, whereas the classical resolution requires roughly 27 000 iterations. We present in Table 2 the energy
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Fig. 11. Case p = 2. At tn = 0.14. Left: estimators as a function of Newton-min iterations. Right: estimators as a function of GMRES
iterations at the first Newton-min step.

Fig. 12. Case p = 2. Left: number of Newton-min iterations at each time step. Right: cumulated number of Newton-min iterations as a
function of time, comparison p = 1, p = 2.

norm of the difference between the exact solution given by the classical Newton–FB algorithm and the adaptive
inexact one for several time values. In particular, it measures the accuracy of our adaptive strategy. We observe that
each numerical unknown obtained by the adaptive strategy is close to the unknown given by the classical resolution.
Thus, our adaptive algorithm saves many iterations and does not deteriorate the numerical solution.

6.2.3. Newton-min linearization with p = 2
In this section, we present results for the adaptive inexact Newton-min algorithm with quadratic finite elements

(p = 2). Figs. 11–13 are respectively the counterparts of Figs. 5–7. The comments made in Section 6.2.1 apply
globally to this case.

In Fig. 12 and 13 (right graphs), we plotted the cumulated number of Newton-min iterations and of GMRES
iterations for both linear and quadratic finite elements, using the same mesh with 4000 elements. Note that there are
4 times more degrees of freedom when p = 2 than with p = 1. In the case p = 2, the exact Newton-min requires
912 semismooth iterations, whereas the adaptive inexact Newton-min requires only 585 semismooth iterations, see
Fig. 12. The economy is more impressive in terms of cumulated GMRES iterations, see Fig. 13. In the case p = 2,
the adaptive inexact algorithm is roughly 3 times cheaper in terms of number of cumulated GMRES iterates than
the exact version (8760 iterates instead of 27 085). When passing from p = 1 to p = 2, we note that the rate of
increase of the number of iterations is smaller for the adaptive inexact case than for the exact Newton-min case.
Indeed, the number of cumulated GMRES increases by a factor of 3.5 in the exact case, and only by a factor 2.8
in the adaptive case.
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Fig. 13. Case p = 2. Left: number of GMRES iterations per time and Newton-min step between tn = 0.008 and tn = 0.065. Right:
cumulated number of GMRES iterations per time step, comparison p = 1, p = 2.

6.3. Comments on implementation and cost

In terms of CPU, the adaptive inexact semismooth strategy presented here requires an overhead to compute the
estimators. In particular, the computation of the algebraic error flux reconstruction based on a multilevel strategy
is fast if the algebraic solver is a geometric multigrid, otherwise it creates an overhead. However, all the estimators
enable a completely parallel implementation, and we believe that the cost is worth paying for, as (1) the number
of iterations (both semismooth Newton and algebraic) is drastically reduced. It seems that the more expensive the
simulation (compare p = 1 and p = 2), the greater the gain. And (2) the guarantee on the total error is a real
advantage, as one can have a confidence in the computed result.

The computation of the parabolic estimators in the general case (p ≥ 2, when the linearization and algebraic
solvers have not converged, see Definitions 4.9 and 5.1), requires the evaluation of positive and negative parts of
λ

n,k,i
h , as well as the evaluation of λ̃n,k,i,pos

h and λ̃n,k,i,neg
h . The latter terms are easy to compute, as it suffices to restrict

the vector Xn,k,i
3h to its positive and negative parts (recall that λh is expressed in the dual basis to the Lagrange basis

functions). The former terms, however, do not take a polynomial form on the mesh Th and are more expensive
to compute. To integrate approximately the terms λn,k,i,pos

h and λn,k,i,neg
h (see ηn,k,i,pos

C,K for instance), we typically
separate the positive and negative parts of λn,k,i

h in the quadrature points.

7. Conclusion

In this work, we focused on deriving a posteriori error estimates for a model parabolic variational inequality.
We employed the conforming Pp finite element method for the discretization in space and the backward Euler
scheme for the discretization in time. We designed a posteriori error estimates when p = 1 valid at convergence
of the semismooth Newton solver and of the iterative algebraic solver. In this case, we estimate both energy and
an approximation of time derivative errors. Next, we extended the study to all polynomial degrees p ≥ 1 and for
each semismooth Newton step k ≥ 1 and each iterative linear algebraic solver step i ≥ 0. Here, we only estimate
the energy error. Based on the separation of the components of the errors, we finally propose an adaptive inexact
semismooth Newton algorithm. The main idea is to stop the two involved iterative solvers at a suitable moment
decided adaptively. We have presented numerical experiments for two inexact semismooth Newton solvers for p = 1
and p = 2, and we showed that our adaptive inexact semismooth strategy saves many iterations while preserving
the accuracy of the numerical solution.
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