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Abstract
In this work, we develop an a posteriori-steered algorithm for a compositional two-phase flow with exchange of components
between the phases in porous media. As a model problem, we choose the two-phase liquid–gas flow with appearance and
disappearance of the gas phase formulated as a system of nonlinear evolutive partial differential equations with nonlinear
complementarity constraints. The discretization of our model is based on the backward Euler scheme in time and the finite
volume scheme in space. The resulting nonlinear system is solved via an inexact semismooth Newton method. The key
ingredients for the a posteriori analysis are the discretization, linearization, and algebraic flux reconstructions allowing to
devise estimators for each error component. These enable to formulate criteria for stopping the iterative algebraic solver
and the iterative linearization solver whenever the corresponding error components do not affect significantly the overall
error. Numerical experiments are performed using the Newton-min algorithm as well as the Newton–Fischer–Burmeister
algorithm in combination with the GMRES iterative linear solver to show the efficiency of the proposed adaptive method.

Keywords Compositional multiphase flow · Phase transition · Complementarity condition · Semismooth Newton method ·
A posteriori error estimate · Adaptivity · Stopping criterion

1 Introduction

The storage of radioactive waste in deep geological layers gen-
erates broad interest among researchers and engineers con-
cerned with the ecosystem preservation and protection. This
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storage induces, on a long time-scale, a gas (hydrogen)
emission affecting heavily the environment and its sus-
tainable and renewable resources. The mathematical mod-
els describing these complex phenomena are part of the
large category of strongly nonlinear evolutive multiphase
multi-compositional equations where numerical simulation
appears to be the only viable approach to finding a solution.
A key point investigated today is the reduction of the com-
putational cost of the numerical resolution employing an
adaptive strategy based on a posteriori error estimates [26,
29, 30, 32, 72].

In this work, we consider a simpler situation described
by a compositional two-phase flow in an isotropic porous
medium in two space dimensions. The two miscible fluids
involved are liquid and gas, and exchange components. To
be coherent with the physical aspects of the problem, at
the beginning of the simulation, the medium is monophasic
liquid, i.e., completely filled with the water component (the
amount of hydrogen is negligible and completely dissolved
in the liquid). Afterwards, the quantity of hydrogen
increases, and it will be partially gaseous. At this stage, the
flow is two-phase liquid–gas. In a usual scenario, at the end
of the simulation, the production of gas hydrogen stops and
the medium comes back to monophasic liquid.
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The mathematical model expressing the behavior of
two fluids with or without components in a porous
medium relies on a strongly nonlinear system of partial
differential equations where the unknowns are the pressure
and saturation of the phases (see the book of Chen et al.
[21]). In Chavent and Jaffré [18], a reduction of these
two-phase (without components) equations to a system
of a single parabolic saturation equation coupled with an
elliptic pressure equation is introduced, replacing the two
pressure unknowns (one per phase) by only one pressure
unknown, called the global pressure. A formulation for the
compositional compressible two-phase flow liquid–gas by
the global pressure has been recently proposed in Amaziane
et al. [2]. Another formulation providing interesting results
is the method of negative saturations (see Panfilov and
Rasoulzadeh [57] and Panfilov and Panfilova [56]).

Concerning the numerical methods employed for the
discretization of the compositional multiphase models, we
mention the finite differences, finite volumes, finite ele-
ments, mixed finite elements, and discontinuous Galerkin
methods (see the books [6, 18, 20, 21, 41, 68] and the refer-
ences therein for a general introduction). The finite volume
method is a popular approach and is commonly used in prac-
tice as it satisfies by construction local mass balance and is
easy to implement (see [23, 35, 43]).

One difficulty encountered by engineers is in handling
the appearance/disappearance of the phases. From a mathe-
matical standpoint, we can mention the pioneering works
of [25] and [39] that are relevant for compositional multi-
phase flows. Nevertheless, it often leads to irregular conver-
gence behavior if the phase states are quickly changing. More
recently, the approach consists in formulating the phase
transitions as a set of local inequality constraints, which
are then directly integrated into the nonlinear solver using
nonlinear complementarity conditions. For a two- phase
industrial application, we can mention the work of Bourgeat
et al. [14], Lauser et al. [52], and Jaffré and Sboui [67] where
in the last reference the appearance and disappearance of the
gas phase are treated by Henry’s law giving rise to a system
of nonlinear equations coupled with nonlinear complemen-
tarity conditions. Next, in Ben Gharbia and Jaffré [12], the
same approach is introduced with as main novelty the appli-
cation of an exact semismooth Newton solver to treat the
nonlinearities on the complementarity constraints.

Usually, the nonlinear system is not solved exactly,
leading to the concept of an inexact semismooth Newton
method which is a popular approach to speed-up the
convergence. Such approaches can be found in [27, 31,
47] for the case of inexact Newton methods and in [36,
40, 45, 53] for inexact semismooth Newton methods. For
convergence results of semismooth Newton algorithms,
refer to [9–11, 37, 38]. For two-phase flows, other
linearization methods are possible and successfully used in

practice. We can mention, as an alternative to Newton’s
method, the recent work of Radu et al. [62] based on [60,
69]. Therein, a linear convergent L-scheme linearization
procedure for Lipschitz-continuous saturations that does not
involve the calculations of any derivatives and does not need
a regularization step is developed. Numerical convergence
of the L-scheme is also observed with monotone increasing
Hölder continuous saturations.

In this work, we use the mathematical model of [12] and
we are interested in deriving a posteriori error estimates,
in order to formulate adaptive stopping criteria for our
inexact semismooth solvers to save computational time.
There is a well-developed literature on a posteriori error
estimates for partial differential equations. Related to our
formulation, we first mention the fundamental work of
Prager and Synge [61], the books of Ainsworth and Oden [1]
and Repin [64], and the work of Ladevèze [51], where
upper bounds for the error inspired from Prager and
Synge’s identity are derived. More recently, one approach
consists in obtaining the so-called potential and equilibrated
flux reconstructions solving auxiliary local problems (see
Destuynder and Métivet [28], Braess and Schöberl [15], Ern
and Vohralı́k [33], and the references therein).

Concerning a posteriori error estimate for variational
inequalities, one can point out the pioneering work of
Kornhuber [48], Chen and Nochetto [22], Veeser [70],
Repin [65], and Ben Belgacem et al. [8]. In particular in [8],
a posteriori error estimates are given for exact solvers and
recently, in [26], a posteriori error estimates are derived for
inexact semismooth solvers and provide adaptive stopping
criteria. The concept of adaptive stopping criteria relies
on stopping the nonlinear and linear iterations whenever
the associated estimators do not affect significantly the
overall error (see [5, 26, 32, 44, 54]). For multiphase flows,
devising a posteriori error estimates between the exact
solution and approximate solution seems very ambitious
and is still an open problem. Indeed, the existence of a
weak solution relies on several strong assumptions and
to construct upper bounds for energy norm errors seems
somewhat inaccessible. In [17], an estimation between the
exact solution and the approximate solution for the L2 norm
in time and H−1 in space has been derived in the case of
a two-phase flow with only one component per phase. In
general, for multiphase compositional flows, the alternative
is to construct estimators as upper bounds for some dual
norm of a residual (see [29], [30], and [72]). Constructing
a posteriori error estimates and devising adaptive stopping
criteria for inexact semismooth Newton solvers when the
phase transition occurs has never been presented to the
best of our knowledge. Therefore, we will try to fill this
gap.

We organize our paper as follows. In Sections 2 and 3,
we introduce the model problem, its finite difference
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discretization in time, and its finite volume discretization in
space. Next, in Section 4, we show that any inexact semis-
mooth Newton method can be employed to solve the non-
linear system stemming from the discretization. Section 5
is devoted to the description of the various potential and
flux reconstruction enabling to obtain a posteriori error
estimators distinguishing all error components, namely
the discretization error, the semismooth linearization error,
and the algebraic error. In Section 6, we show numeri-
cal experiments when the semismooth min and Fischer–
Burmeister solvers are employed in one-dimensional space,
and Section 7 summarizes our findings.

2 Setting

The methodology is presented for the sake of clarity in 2
space dimensions but can be extended to 3 or 1 without
difficulties. We assume that the porous medium domain �

is an open bounded connected polygon. We are interested in
solving the model of appearance/disappearance of the gas
phase thanks to nonlinear complementarity conditions over
the time interval (0, tF), tF > 0, and devise a posteriori error
estimates.

2.1 Functional spaces

First, we recall the definition of some Sobolev spaces. Let
H 1(�) be the space of L2 functions on the domain � which
admit a weak gradient in [L2(�)]2 and H 1

0 (�) its zero-
trace subspace. Similarly, H(div, �) stands for the space
of [L2(�)]2 functions having a weak divergence in L2(�).
The standard notation ∇ and ∇· are used respectively for
the weak gradient and divergence. For a nonempty bounded
set O of R2, we denote its Lebesgue measure by |O| and
the L2(O) scalar product by (u, v)O = ∫O uv dx for u, v ∈
L2(O). We also use the following notations: ‖v‖2

O :=
(v, v)O , and ‖∇v‖2

O := (∇v, ∇v)O . Besides, the Poincaré–
Friedrichs and the Poincaré–Wirtinger inequalities (see [7,
59]), state that if vO denotes the mean value of v on O and
hO the diameter of O , then

‖v‖O ≤ CPFhO ‖∇v‖O ∀v ∈ H 1
0 (O),

‖v − vO‖O ≤ CPWhO ‖∇v‖O ∀v ∈ H 1(O).

The constants CPF and CPW can be precisely estimated in
many cases. In particular, if O is convex, CPW can be taken
as 1

π
, see [7, 59] whereas CPF = 1 is always possible.

2.2 The compositional two-phasemodel

We consider a compositional thermal biphasic flow in the
porous medium �. The porous medium is characterized

by its porosity φ and its absolute permeability K, both of
which are assumed constant in space and time for the sake
of simplicity. When the porous medium � is anisotropic,
the positive constant K is replaced by a symmetric positive
definite matrix.

The phases are collected in the set P = {l, g}
where “l” stands for the liquid phase and “g” for the gas
one. Each of the considered fluids can be composed of
two components: water (denoted by “w”) and hydrogen
(denoted by “h”). The set of components is defined by C =
{w, h} and we denote by C p the set of components present
in the phase p and Pc the set of phases containing the
component c.

For a given phase p ∈ P , Sp denotes its saturation, P p

its pressure and for each component c ∈ C p, χ
p
c is the

molar fraction of the component c in phase p. Because of
the interactions of forces between the fluids and the solid
matrix and the curvature of the surface contact between
the two fluids, we have an additional pressure called the
capillary pressure depending on the saturation Sl with
higher wettability (see [55]), defined as

Pcp(S
l) = P g − P l. (1)

Here, Pcp is a given function of the liquid saturation Sl and
in the literature, the suggestions of Brooks and Corey or Van
Genuchten are commonly used, see [42]. The unknowns of
the model below will be Sl (saturation of the liquid phase),
P l (pressure of the liquid phase), and χ l

h (molar fraction of
hydrogen in the liquid phase).

For a phase p ∈ P and for a given component c ∈ C p,
ρ

p
c (P p, χ

p
c ) represents its molar density, C

p
c (P p, χ

p
c ) its

molar concentration, Jp
c (P p, Sp, χ

p
c ) its Fick flux, and D

p
c

its molecular diffusion coefficient supposed constant. Fur-
thermore, for a given phase p ∈ P , μp(P p, χ

p
c ) stands

for its dynamic viscosity and k
p
r (Sp) represents its rela-

tive permeability. The relative permeability is typically an
increasing function of Sp satisfying k

p
r (0) = 0. We do

not specify here the assumptions on this and the other
nonlinear functions; instead we suppose below in Assump-
tion 2 that all the data of the model are such that they
allow for an appropriate definition of the weak solution
(see also Remark 1). Examples of possible model param-
eters are then given in Section 6. Then, Mc represents the
molar mass of the component c and g = 9.81m.s−2 is the
gravity acceleration constant. We recall some elementary
properties. The molar density of phase p ∈ P is defined as
the sum of the molar densities of the components present in
the phase:

ρp := ρp
w + ρ

p

h .
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The molar concentration of phase p ∈ P is defined as the
sum of the molar concentrations of the components present
in the phase:

Cp := Cp
w + C

p

h := ρ
p
w

Mw
+ ρ

p

h

Mh
. (2)

Furthermore, the molar fraction of component c ∈ C p is
defined by

χ
p
c := C

p
c

Cp
, so that χp

w + χ
p

h = 1. (3)

The Fick’s law for any component c ∈ C p gives

Jp
c := −φMcS

pCpD
p
c ∇χ

p
c .

The molecular diffusion in a phase p ∈ P is supposed
negligible compared to the global displacement of this phase
which implies

Jp

h + Jp
w = 0. (4)

Next, as the pores are completely occupied by the fluids, we
have the closure equation

Sl + Sg = 1. (5)

To finish, the Darcy velocity qp for any phase p ∈ P is
defined by:

qp := −K
k
p
r (Sp)

μp

[∇P p − ρpg∇z
]

.

We make the following assumptions:

Assumption 1 We assume that the fluid is at thermody-
namic equilibrium and that the water is incompressible and
only present in the liquid phase:

ρl
w is a constant, ρg

w = 0, ρg = ρ
g
h , χ

g
h = 1, and χ

g
w = 0.

Next, we suppose that the liquid solution is an ideal diluted
solution and the gas is slightly compressible:

Cl
h � Cl

w and ρg = βgP g,

where βg is a compressibility constant.

From Assumption 1 and (4), we obtain Jg
h = Jg

w = 0.
Next, equation (3) combined with Assumption 1 gives

χ l
w ≈ 1 and χ l

h ≈ Cl
h

Cl
w

. (6)

Finally, equations (2) and (6) yield

ρl
h ≈ β lχ l

h with β l = ρl
w

Mh

Mw
. (7)

Under Assumption 1, Fick’s law for the hydrogen compo-
nent in the liquid phase reads

Jl
h = −φMhS

l

(
ρl

w

Mw
+ β l

Mh
χ l

h

)

Dl
h∇χ l

h, (8)

and the Darcy velocities read

ql = −K
kl

r(S
l)

μl

[∇P l − [ρl
w + β lχ l

h

]
g∇z

]
,

qg = −Kk
g
r (1 − Sl)

μg
[∇ [P l + Pcp(S

l)
]

−βg
[
P l + Pcp(S

l)
]
g∇z

]
.

(9)

In the sequel, all approximate equations will be considered
to be exact equations.

2.3 Governing partial differential equations
and nonlinear complementarity constraints

The system of partial differential equation representing
the mass conservation for the two components, water and
hydrogen, has the following form:

∂t (φρl
wSl+φρ

g
wSg) +∇ · (ρl

wq
l+ρ

g
wqg+ Jl

w + Jg
w) = Qw,

∂t (φρl
hS

l + φρ
g
hSg) +∇ · (ρl

hq
l + ρ

g
hq

g + Jl
h + Jg

h) = Qh,

(10)

where Qc is a source term representing the outflow of the
component c ∈ C . To model the appearance of the gas
phase, we employ Henry’s law (see [12, 67]), giving

HP g = ρl
h,

with H = H̃Mh where H̃ is Henry’s constant. Next, using
(5), (1), and (7) yields

1 − Sl > 0 and H [P l + Pcp(S
l)] − β lχ l

h = 0. (11)

If the gas phase does not exist, using (5), (1),
and [67, Section 3.2], we get

1 − Sl = 0 and HP l − β lχ l
h > 0. (12)

Thus, using (11) and (12), we get nonlinear complemen-
tarity constraints:

1 − Sl ≥ 0, H [P l + Pcp(S
l)] − β lχ l

h ≥ 0,

[1 − Sl] [H [P l + Pcp(S
l)] − β lχ l

h

] = 0.
(13)

Finally, using Assumption 1, (10), and (13), our two-phase
flow model with exchange between phases is governed by
the following system: find Sl, P l, χ l

h such that

∂t lw + ∇ · Φw = Qw,

∂t lh + ∇ · Φh = Qh,

1 − Sl ≥ 0, H [P l + Pcp(S
l)] − β lχ l

h ≥ 0,

[1 − Sl] [H [P l + Pcp(S
l)] − β lχ l

h

] = 0.

(14)

Here, the component fluxes Φc, c ∈ C , are defined by

Φw = ρl
wq

l − Jl
h, (15)

Φh = β lχ l
hq

l + βg
[
P l + Pcp(S

l)
]
qg + Jl

h, (16)
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where ql, qg, and Jl
h are defined in (9) and (8) and the

amounts of components w and h per unit volume are defined
by

lw = φρl
wSl,

lh = φβ lχ l
hS

l + φβg
[
P l + Pcp(S

l)
] [

1 − Sl
]

.
(17)

For the sake of simplicity, we assume that no-flow boundary
conditions are prescribed for all the component fluxes,

Φc · n� = 0 on ∂� × (0, tF) c ∈ {w, h}
with n� the outward unit normal vector to �. At t = 0, we
prescribe the initial amount of each component

lc(·, 0) = l0
c ∀c ∈ {w, h} . (18)

3 Discretization and numerical
approximation

We present in this section the discretization of our model.
We use the backward Euler scheme in time and the cell-
centered lowest order finite volume scheme in space.

3.1 Space-timemeshes

For the time discretization, we consider an increasing
sequence of points {tn}0≤n≤Nt

such that t0 = 0, tNt =
tF, and we introduce the interval In = (tn−1, tn) and the
time step τn = tn − tn−1, ∀1 ≤ n ≤ Nt . For the
space discretization, we consider Th a family of conforming
triangular meshes of the space domain �. We assume that
Th is formed by a set of triangles verifying

⋃
K∈Th

K = �

where the intersection of two elements of Th is either an
empty set, a vertex, or an edge. We also define H 1(Th) as
the broken Sobolev space of L2 functions on the domain �

such that their restriction to any element K are H 1 in the
element K . We denote by P

c
m(Th) the space of continuous

piecewise polynomials of degree ≤ m and by P
d
m(Th)

the broken polynomial space of discontinuous piecewise
polynomials of degree ≤ m. In the sequel, we will employ
m = 0 and m = 2. We denote by Dm the set of Lagrange
degrees of freedom associated to P

c
m(Th).

The set of vertices of Th is denoted by Vh and
is decomposed into interior vertices V int

h and boundary
vertices V ext

h . The vertices of an element K ∈ Th are
collected in the set VK . We denote by Eh the set of mesh
edges. Boundary edges are collected in the set E ext

h =
{σ ∈ Eh; σ ⊂ ∂�} and internal edges are collected in the set
E int

h = Eh\E ext
h . Likewise, the edges of an element K ∈ Th

are collected in the set EK and the later is decomposed into
interior edges E int

K and boundary edges E ext
K .

We denote by Nsp the number of elements in the mesh
Th. Furthermore, the notation nK,σ stands for the outward

unit normal vector to the element K on σ . We also assume
that the family Th is superadmissible in the sense that for
all cells K ∈ Th there exists a point xK ∈ K (the cell
center) and for all edges σ ∈ Eh there exists a point xσ ∈ σ

(the edge center) such that, for all edges σ ∈ EK , the line
segment joining xK with xσ is orthogonal to σ (see [34]).
For an interior edge σ ∈ E int

h shared by two elements K

and L (denoted in the sequel by σ = K ∩ L), we define the
distance between these elements dKL := dist(xK, xL).

Next, the vertical coordinate of any point xK in the mesh
Th is denoted by zK . For a ∈ Dm, we call Ta the patch
around a, i.e., the set of elements of Th that share a, and
ωa

h ⊂ � is the corresponding polygonal subdomain with
nωa

h
its outward unit normal. The number of elements in Ta

is denoted by |Ta|. Note for instance that, in 2D, the patch
for an interior edge degree of freedom contains exactly 2
elements and the patch for a vertex degree of freedom can
contain a variable number of elements.

3.2 Finite volume discretization

Using the cell-centered finite volume method, the unknowns
of the model are discretized using one value per cell: ∀1 ≤
n ≤ Nt we let

Un := (Un
K)K∈Th

∈ R
3Nsp , Un

K :=
⎛

⎝
Sn

K

P n
K

χn
K

⎞

⎠ ∈ R
3,

where Sn
K , P n

K , and χn
K are respectively the discrete

elementwise unknowns approximating the values of Sl, P l,
and χ l

h in the element K ∈ Th. In the same way, lnc,K
approximates the value of lc in the element K ∈ Th.

For a function of time v with sufficient regularity, we
denote vn := v(tn), 0 ≤ n ≤ Nt , and, for 1 ≤ n ≤ Nt , we
define the backward differencing operator

∂n
t v := 1

τn

(
vn − vn−1

)
. (19)

To approximate the space gradient we use

(∇v · nK,σ , 1
)
σ

≈|σ |vL−vK

dKL

if σ ∈ E int
K , σ =K∩L.

First, we discretize the water conservation equation. Let
K ∈ Th. By integration over the element K , we obtain

(∂t lw + ∇ · Φw, 1)K = (Qw, 1)K .

The Green formula gives the approximation for n =
1, . . . , Nt

|K|∂n
t lw,K +

∑

σ∈EK

Fw,K,σ (Un) = |K|Qn
w,K, (20)
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where the discrete elementwise water source term and the
discrete elementwise amount of water are given by

Qn
w,K :=

∫

In

(Qw, 1)K

|K|τn

(t) dt, and lnw,K := φρl
wSn

K and,

∂n
t lw,K = 1

τn

(
lnw,K − ln−1

w,K

)
.

Let σ ∈ E int
K , σ = K ∩ L. Then, the total flux across σ of

the water component is given by

Fw,K,σ (Un) := ρl
w(Ml)nσ (ψ l)nσ − (jlh)

n
σ , (21)

with the discrete Fick term given by

(jlh)
n
σ := −|σ |φMhS

n
σ

[
ρl

w

Mw
+ β l

Mh
χn

σ

]

Dl
h
χn

L − χn
K

dKL

, (22)

the discrete liquid Darcy term given by

(ψ l)nσ := −|σ | K
dKL

[
P n

L−P n
K −

[
ρl

w+β lχn
σ

]
g[zL−zK ]

]
,

(23)

and the mobility of the liquid phase using an upwind
approximation

(Ml)nσ := kl
r

(
Sn

K

)

μl
if (ψ l)nσ ≥ 0,

(Ml)nσ := kl
r

(
Sn

L

)

μl
if (ψ l)nσ < 0,

(24)

where

Sn
σ := Sn

K + Sn
L

2
, and χn

σ := χn
K + χn

L

2
. (25)

Now, we discretize the hydrogen conservation equation.
Let K ∈ Th. By integration over the element K we obtain

(∂t lh + ∇ · Φh, 1)K = (Qh, 1)K .

The Green formula gives the approximation for n =
1, . . . , Nt

|K|∂n
t lh,K +

∑

σ∈EK

Fh,K,σ (Un) = |K|Qn
h,K, (26)

where the discrete elementwise hydrogen source term and
the discrete elementwise amount of hydrogen are given by

Qn
h,K :=

∫

In

(Qh, 1)K

|K|τn

(t) dt,

lnh,K := φβ lχn
KSn

K + φβg
[
P n

K + Pcp(S
n
K)
] [

1 − Sn
K

]
.

Let σ ∈ E int
K , σ = K ∩ L. The total discrete flux across σ

of the hydrogen component is given by

Fh,K,σ (Un) := β lχn
σ (Ml)nσ (ψ l)nσ

+ (Mg)nσ (ψg)nσ (ρg)nσ + (jlh)
n
σ ,

(27)

where the discrete Fick term is given by (22), the discrete
Darcy liquid term is given by (23), the mobility of the liquid

phase is given by (24), and χn
σ is given by (25). Furthermore,

the discrete Darcy gas term is given by

(ψg)nσ := −|σ | K
dKL

[
P n

L + Pcp(S
n
L) − P n

K − Pcp(S
n
K)

−(ρg)nσ g[zL − zK ]] ,
with

(ρg)nσ := (ρg)nK +(ρg)nL

2
, and (ρg)nK :=βg[P n

K +Pcp(S
n
K)
]
.

Next, the mobility of the gas phase is

(Mg)nσ := k
g
r
(
1 − Sn

K

)

μg if (ψg)nσ ≥ 0,

(Mg)nσ := k
g
r
(
1 − Sn

L

)

μg if (ψg)nσ < 0.

If σ ∈ E ext
K ⊂ ∂�, the homogeneous Neumann boundary

condition yields

Fw,K,σ (Un) = Fh,K,σ (Un) = 0.

Thus, (20) and (26) define ∀K ∈ Th, ∀c ∈ {w, h},
∀1 ≤ n ≤ Nt the nonlinear function Hn

c,K : R3Nsp → R

defined by

Hn
c,K(Un) := |K|∂n

t lc,K +
∑

σ∈E int
K

Fc,K,σ (Un) − |K|Qn
c,K .

(28)

At each time step n, (28) will lead to a system of
2Nsp nonlinear equations. As we have 3Nsp unknowns, to
close the system, we use the nonlinear complementarity
conditions as follows.

Let FK be the function discretizing elementwise 1 − Sl

and let GK be the function discretizing elementwise
H [P l + Pcp(S

l)] − β lχ l
h defined by:

FK : R3 → R

Un
K �−→ 1 − Sn

K,

GK : R3 → R

Un
K �−→ H

[
P n

K + Pcp(S
n
K)
]− β lχn

K .

Then, the finite volume scheme corresponding to (14) reads:
for all 1 ≤ n ≤ Nt , find Un ∈ R

3Nsp such that for all
K ∈ Th

Hn
c,K(Un) = 0 ∀c ∈ C ,

FK(Un
K) ≥ 0, GK(Un

K) ≥ 0, FK(Un
K)GK(Un

K) = 0.

(29)

Observe that system (29) is written elementwise. We define
the global version of the first 2Nsp lines of system (29) by

H n(Un) = 0 where H n : R3Nsp → R
2Nsp (30)
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is defined over K by the first line of (29). Inexact semi-
smooth Newton methods will be employed to solve (29), as
we detail in the next section.

4 Inexact semismooth Newtonmethod

We detail in this section a semismooth Newton linearization
associated to (29). We proceed in several steps. First, we
briefly present the class of C-functions and the concept of
semismoothness. Next, we give the linearization of (30) at
each semismooth step.

4.1 C-functions

Definition 1 A function f : R
Nsp × R

Nsp → R
Nsp is

a complementarity function or (C-function) if ∀(a, b) ∈
R

Nsp × R
Nsp

f (a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, aT b = 0.

Examples of C-functions are the minimum (min)
function

(min {a, b})l = min {al , bl} l = 1, . . . , Nsp, (31)

and the Fischer–Burmeister function

(fFB(a, b))l =
√

a2
l + b2

l −(al+bl) l = 1, . . . , Nsp. (32)

For a direct application of the min function, see [12, 26],
and for more general details on C-functions, see [37, 38].
For 1 ≤ n ≤ Nt let Cn be any C-function satisfying

Cn
((

FK(Un
K)
)
K∈Th

,
(
GK(Un

K)
)
K∈Th

)
= 0

⇐⇒ FK(Un
K)≥0, GK(Un

K)≥0, FK(Un
K)GK(Un

K)=0
∀K ∈ Th.

Introducing the function C n : R3Nsp → R
Nsp defined as

C n(Un) = Cn
((

FK(Un
K)
)
K∈Th

,
(
GK(Un

K)
)
K∈Th

)
,

(33)

problem (29) then reads, for all 1 ≤ n ≤ Nt

H n(Un) = 0,

C n(Un) = 0.
(34)

The disadvantage of introducing the C-function is that the
problem would no longer be C 1, thus causing problems for
the local quadratic convergence of the Newton algorithm.
Nevertheless, the C-functions that are commonly used are
locally Lipschitz and continuous, thus differentiable almost
everywhere as a result of the Rademacher Theorem (see [24,
37]). More precisely they belong to the class of strong
semismooth functions. Then, it is possible (see [12, 13, 37,
38]) to build a semismooth Newton scheme.

4.2 Inexact semismooth Newtonmethod

For 1 ≤ n ≤ Nt and Un,0 ∈ R
3Nsp fixed (typically Un,0 =

Un−1), the semismooth Newton algorithm generates a
sequence (Un,k)k≥1, with Un,k ∈ R

3Nsp given by the system
of linear algebraic equations:

A
n,k−1Un,k = Bn,k−1, (35)

where the Jacobian matrix A
n,k−1 ∈ R

3Nsp,3Nsp and the right
hand side vector Bn,k−1 ∈ R

3Nsp are defined by

A
n,k−1 :=

[
JH n(Un,k−1)

JC n(Un,k−1)

]

, (36)

Bn,k−1 :=
[
JH n(Un,k−1)Un,k−1 − H n(Un,k−1)

JC n(Un,k−1)Un,k−1 − C n(Un,k−1)

]

. (37)

Note that here the 3Nsp lines of (28) are nonlinear and the
semismooth nonlinearity occurs in the last Nsp lines.

Here JH n(Un,k−1) is the Jacobian matrix of the function
H n at point Un,k−1 obtained by a Newton linearization
and JC n(Un,k−1) is the Jacobian matrix of the semismooth
function “in the sense of Clarke” (see [12, 13, 24, 37,
38]). For example, if we consider the semismooth function
min of (31) and if we denote by Y the vector whose each
component is defined by Y l := HP ′

cp(S
n,k−1
Kl

) for 1 ≤ l ≤
Nsp and if we define by K and L the matrices by

K := [−IdNsp×Nsp , 0Nsp×Nsp , 0Nsp×Nsp

]
,

L :=
[
diagYNsp×Nsp , H × IdNsp×Nsp , −β l × IdNsp×Nsp

]
,

then, the lth row of the matrix JC n(Un,k−1) is either given
by the lth row of K if

1 − S
n,k−1
Kl

≤ H
[
P

n,k−1
Kl

+ Pcp(S
n,k−1
Kl

)
]

− β lχ
n,k−1
Kl

,

or by the lth line of L if

H
[
P

n,k−1
Kl

+ Pcp(S
n,k−1
Kl

)
]

− β lχ
n,k−1
Kl

< 1 − S
n,k−1
Kl

.

Next, the approximate solution to (35) is obtained using
an iterative algebraic solver. For 1 ≤ n ≤ Nt , a fixed
semismooth Newton step k ≥ 1, and an initial guess Un,k,0

(usually, Un,k,0 = Un,k−1) the iterative algebraic solver
generates a sequence (Un,k,i)i≥0 satisfying

A
n,k−1Un,k,i = Bn,k−1 − Rn,k,i (38)

where Rn,k,i ∈ R
3Nsp is the algebraic residual vector.

Below, it will be convenient to use the detailed form of the
first two equations of (38):

|K|
τn

[
lc,K

(
Un,k−1

)
− ln−1

c,K + L n,k,i
c,K

]
+
∑

σ∈E int
K

F n,k,i
c,K,σ

−|K|Qn
c,K + R

n,k,i
c,K = 0, ∀K ∈ Th

(39)
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with the linear perturbation in the accumulation defined by

L n,k,i
c,K :=

∑

K ′∈Th

∂lnc,K

∂UK ′
(Un,k−1)

[
U

n,k,i
K ′ − U

n,k−1
K ′

]
,

and the linearized component flux by

F n,k,i
c,K,σ :=

∑

K ′∈Th

∂Fc,K,σ

∂UK ′

(
Un,k−1

) [
U

n,k,i
K ′ − U

n,k−1
K ′

]

+ Fc,K,σ

(
Un,k−1

)
.

(40)

5 A posteriori error estimates

5.1 Preamble

In this section, we establish an a posteriori error estimate
between the exact solution and its approximate numerical
solution at each semismooth Newton step k ≥ 1 and each
linear algebraic step i ≥ 0. We start by giving some addi-
tional generic notations. Concerning the discrete unknowns,
as we employed the cell-centered finite volume method, for
each time step 0 ≤ n ≤ Nt and for each k ≥ 1 and i ≥ 0, the
discrete liquid pressure as well as the discrete liquid satura-
tion and the discrete molar fraction of liquid hydrogen are
piecewise constant in space. To carry out properly the a pos-
teriori analysis, the discrete pressures and the discrete molar
fraction of liquid hydrogen should belong to H 1(�) which
is not the case. Therefore we assume that, from the constant
finite volume unknowns, we have constructed discontinu-
ous piecewise quadratic-in-space functions P

n,k,i
h ∈ P

d
2(Th)

(liquid pressure), χ
n,k,i
h ∈ P

d
2(Th) (molar fraction). We

will also employ continuous piecewise quadratic functions
P̃

n,k,i
h ∈ P

c
2(Th), and χ̃

n,k,i
h ∈ P

c
2(Th). As an intermediate

of computation we will also need to construct a discon-
tinuous piecewise quadratic-in-space gas pressure function
P

g,n,k,i

h (see Section 5.3). The saturation and thus the
amount of water and hydrogen are defined in P

d
0(Th) by

S
n,k,i
h |K(x)=S

n,k,i
K , l

n,k,i
w,h |K(x) = l

n,k,i
w,K , l

n,k,i
h,h |K = l

n,k,i
h,K ,

∀K ∈ Th.

(41)

From the above space functions, we define the space-time
functions as continuous and piecewise affine in time (i.e., in
P

c
1(0, tF)) by

P
n,k,i
hτ (tn)=P

n,k,i
h , P̃

n,k,i
hτ (tn)= P̃

n,k,i
h , l

n,k,i
c,hτ (tn)= l

n,k,i
c,h ,

S
n,k,i
hτ (tn)=S

n,k,i
h , χ

n,k,i
hτ (tn)=χ

n,k,i
h , χ̃

n,k,i
hτ (tn)= χ̃

n,k,i
h .

(42)

Concerning the source terms, we define the space-time
function Qc,hτ such that

(
Qc,hτ

) |K×In = Qn
c,K , thus piece-

wise constant in time and in space. To finish we assume that
the initial condition (18) holds. For the a posteriori analysis,
the goal would be to find an upper bound of the form:

∥
∥
∥P l − P

n,k,i
hτ

∥
∥
∥



+
∥
∥
∥Sl − S

n,k,i
hτ

∥
∥
∥



+
∥
∥
∥χ l

h − χ
n,k,i
hτ

∥
∥
∥



≤ η,

with ‖·‖
 some norm and η only depending on the approxi-
mate solution. This kind of estimate has to our knowledge
not been established for compositional multiphase flow. In
the literature, such an a posteriori error estimate has been
derived for a two-phase flow with one component per phase
(see [17]). We thus follow the methodology proposed in [29,
72] by considering some dual norm of the residual. We first
start by defining appropriate spaces for the unknowns. Let
X, Y , Ŷ , and Z be the spaces defined by:

X := L2((0, tF); H 1(�)),

Y := H 1((0, tF); L2(�)),

Ŷ := H 1((0, tF); L∞(�)),

Z := {
v ∈ L2((0, tF); L∞(�)), v ≥ 0 on � × (0, tF)

}
.

We denote by Xn the restriction of the energy space X to
the time interval In, Xn := L2

(
In; H 1(�)

)
. We equip the

spaces X and Xn with the norms

‖ϕ‖X :=
{

Nt∑

n=1

‖ϕ‖2
Xn

dt

} 1
2

, ‖ϕ‖Xn
:=
⎧
⎨

⎩

∫

In

∑

K∈Th

‖ϕ‖2
X,K dt

⎫
⎬

⎭

1
2

,

(43)

with ‖ϕ‖2
X,K := εh−2

K ‖ϕ‖2
K + ‖∇ϕ‖2

K .
Note that ε = 0 is to be chosen when homogeneous

Dirichlet conditions are prescribed on the boundary ∂�,
whereas ε > 0 enables to take into account Neumann
boundary conditions. Then, h−2

K is a scaling term.

5.2Weak solution

Let Qc ∈ L2((0, tF) ; L2(�)) ∀c ∈ C . We assume that there
exists a unique weak solution satisfying:

Assumption 2

Sl ∈ Ŷ , 1 − Sl ∈ Z, lw ∈ Y, lh ∈ Y, (44)

P l ∈ X, χ l
h ∈ X, (45)
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Φc ∈ [L2((0, tF);H(div, �)]2 ∀c ∈ C , (46)
∫ tF

0
(∂t lc, ϕ)� (t) dt −

∫ tF

0
(Φc, ∇ϕ)� (t) dt

=
∫ tF

0
(Qc, ϕ)� (t) dt ∀ϕ ∈ X ∀c ∈ C , (47)

∫ tF

0

(
λ−
(
1−Sl

)
, H [P l+Pcp(S

l)]− β lχ l
h

)

�
(t) dt≥0

∀λ ∈ Z, (48)

and the initial condition (18) holds, where lc and Φc are
defined by (17), (15), and (16).

Remark 1 In Assumption 2, we characterize the weak
solution for the continuous two-phase problem with phase
transition (14) and suppose that it exists and is unique.
Under this assumption, we can define below an error
measure for the error between the weak and approximate
solutions. We are not aware of affirmative existence and
uniqueness results for the phase transition problem (14).
For the simpler two-phase flow model with one component
per phase and no phase transition, it is possible to prove
existence and uniqueness of the weak solution under
specific assumptions on the unknowns and parameters of the
model (see [3], [4], [49], and [19]). In [17], an a posteriori
error estimate for a two-phase flow model with weak
solution based the global pressure is established. This result
states that an energy-type norm of the differences between
the exact and the approximate nonwetting phase saturations
and the global pressures and its discrete analogue can be
bounded first by a dual residual norm (cf. (51) and (52)) by
a fully computable a posteriori error estimate.

Proposition 1 Under assumption (44), the nonlinear
complementarity conditions given by the third line of (14)
are equivalent to the assumption (48).

Proof Suppose that the third line of the strong formulation
(14) holds. Let λ ∈ Z. We have 1 − Sl ∈ Z and
∫ tF

0

(
λ −

(
1 − Sl

)
, H [P l + Pcp(S

l)] − β lχ l
h

)

�
(t) dt

=
∫ tF

0

(
λ, H

[
P l + Pcp(S

l)
]

− β lχ l
h

)

�
(t) dt ≥ 0.

Conversely, suppose that the assumption (48) is satisfied.
For λ = 0 ∈ Z we have

∫ tF

0

(
1 − Sl, H [P l + Pcp(S

l)] − β lχ l
h

)

�
(t) dt ≤ 0. (49)

Next, for λ(x, t) = 1 − Sl(x, t) + 1O×[t−ζ,t+ζ ] where
ζ > 0 and O is any measurable subset of � we have λ ∈ Z

as 1 − Sl ∈ Z; thus

H [P l(x, t) + Pcp(S
l(x, t))] − β lχ l

h(x, t) ≥ 0. (50)

Therefore, combining (49), (50), and the assumption 1 −
Sl ≥ 0, we get

[
1 − Sl

] [
H
[
P l + Pcp(S

l)
]

− β lχ l
h

]
= 0.

5.3 Error measure

As discussed in Section 5.1, the natural choice is to
consider an error measure constructed from the dual norm
of a residual supplemented by the nonconformity of the
liquid pressure and the molar fraction of liquid hydrogen
following [29] and the references therein. As we treat the
phase transitions, we also have to add a term checking the
complementarity constraints.

Definition 2 For the discrete approximations P
n,k,i
hτ and

χ
n,k,i
hτ belonging to L2(In; H 1(Th)) to be defined later

in Section 5.5 and S
n,k,i
hτ given by (41)–(42), the residual

associated to assumption (47) is defined for any ϕ ∈ Xn by

〈Rc(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ), ϕ〉X′

n,Xn

:=
∫

In

{(
Qc−∂t l

n,k,i
c,hτ , ϕ

)

�
+
(
Φ

n,k,i
c,hτ , ∇ϕ

)

�

}
(t) dt, (51)

and its dual norm is defined by

∥
∥
∥Rc(S

n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ )

∥
∥
∥

X′
n

:= sup
ϕ∈Xn,‖ϕ‖Xn=1

〈Rc(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ), ϕ〉X′

n,Xn
, (52)

where Φ
n,k,i
c,hτ , c ∈ C , are the discrete fluxes corresponding

to (15) and (16) defined by

Φ
n,k,i
w,hτ := ρl

wq
n,k,i
hτ − Jn,k,i

h,hτ ,

Φ
n,k,i
h,hτ := β lχ

n,k,i
hτ qn,k,i

hτ +βg
[
Pcp(S

n,k,i
hτ ) + P

n,k,i
hτ

]
qg,n,k,i

hτ

+Jn,k,i
h,hτ ,
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where the discrete Darcy space-time vectorial functions
qn,k,i

hτ and qg,n,k,i

hτ and the discrete liquid Fick space-time

vectorial function Jn,k,i
h,hτ are defined by

qn,k,i
hτ := −K

kl
r(S

n,k,i
hτ )

μl

[
∇P

n,k,i
hτ −

[
ρl

w+β lχ
n,k,i
hτ

]
g∇z

]
,

qg,n,k,i

hτ := −K
k

g
r (1−S

n,k,i
hτ )

μg

[
∇P

g,n,k,i

hτ −βgP
g,n,k,i

hτ g∇z
]
,

Jn,k,i
h,hτ := −φMhS

n,k,i
hτ

[
ρl

w

Mw
+ β l

Mh
χ

n,k,i
hτ

]

Dl
h∇χ

n,k,i
hτ ,

where the space-time function P
g,n,k,i

hτ is built from P
n,k,i
hτ

and S
n,k,i
hτ in Section 5.5 below. Furthermore, we define the

residual equation associated to assumption (48) as

Re(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ )

:= 1

α
×
[∫

In

(
1−S

n,k,i
hτ , H

[
P

n,k,i
hτ +Pcp(S

n,k,i
hτ )

]
−β lχ

n,k,i
hτ

)

�
(t) dt

]

,

with α > 0 a rescaling constant.

We define our error measure by

N n,k,i :=
{
∑

c∈C

∥
∥
∥Rc(S

n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ )

∥
∥
∥

2

X′
n

} 1
2

+
{[

N n,k,i
P (P

n,k,i
hτ )

]2 +
[
N n,k,i

χ (χ
n,k,i
hτ )

]2
} 1

2

+Re(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ), (53)

with

N n,k,i
P (P

n,k,i
hτ ) := inf

δl∈Xn

⎧
⎨

⎩

∑

c∈C l

∫

In

∥
∥
∥Υ l,c(P

n,k,i
hτ )(t) − Υ l,c(δl)(t)

∥
∥
∥

2
dt

} 1
2

,

(54)

N n,k,i
χ (χ

n,k,i
hτ ) := inf

θ∈Xn

{∫

In

∥
∥
∥Ψ (χ

n,k,i
hτ )(t) − Ψ (θ)(t)

∥
∥
∥

2
dt

} 1
2

,

(55)

where the function Υ l,c is defined by

ϒ l,w(ϕ) := −K
kl

r(S
n,k,i
hτ )

μl
ρl

w∇ϕ,

Υ l,h(ϕ) := −K
kl

r(S
n,k,i
hτ )

μl
β lχ l

h∇ϕ,

∀ϕ ∈ L2(In; H 1(Th))

and the function Ψ defined by

Ψ (ϕ) := −φMhS
n,k,i
hτ

[
ρl

w

Mw
+ β l

Mh
χ

n,k,i
hτ

]

Dl
h∇ϕ,

∀ϕ ∈ L2(In; H 1(Th)).

5.4 Equilibrated component flux reconstructions

Let 1 ≤ n ≤ Nt , a semismooth Newton linearization
iteration k ≥ 1, and an algebraic solver iteration i ≥ 0 be
fixed. We are interested in finding an upper bound for the
error measure N n,k,i defined in (53). To do so, we employ
the methodology of the equilibrated flux reconstruction in
the context of the cell-centered finite volume method [29,
30, 32]. The subspace of H(div, �) we use in the sequel
is the lowest order Raviart–Thomas space (see Raviart and
Thomas [63], or Roberts and Thomas [66], or Brezzi and
Fortin [16]) and is defined by

RT0(�) := {wh ∈ H(div, �), wh|K ∈ RT0(K) ∀K ∈ Th} ,

RT0(K) := [P0(K)]2 + x · P0(K) with x =
(

x

y

)

.

For a function v ∈ RT0(K), we recall that its 3 degrees of
freedom are given by (v · nK,σ , 1)σ , σ ∈ EK .
For all component c ∈ C , for all K ∈ Th, and for
all σ ∈ E int

K we can define from (20), (26), and (39)
the different component flux reconstructions in RT0(Th),
namely the discretization flux reconstruction Θ

n,k,i
c,h,disc, the

linearization flux reconstruction Θ
n,k,i
c,h,lin, and the algebraic

flux reconstruction Θ
n,k,i
c,h,alg as follows

(
Θ

n,k,i
c,h,disc · nK,σ , 1

)

σ
:=Fc,K,σ

(
Un,k,i

)
, (56)

(
Θ

n,k,i
c,h,lin · nK,σ , 1

)

σ
:=F n,k,i

c,K,σ − Fc,K,σ

(
Un,k,i

)
, (57)

Θ
n,k,i,ν
c,h,alg := Θ

n,k,i+ν
c,h,disc +Θ

n,k,i+ν
c,h,lin −

(
Θ

n,k,i
c,h,disc+Θ

n,k,i
c,h,lin

)
(58)

with a fixed number ν > 0 of additional algebraic iterations.

Here Fc,K,σ is defined by (21) or (27), and F n,k,i
c,K,σ

is defined by (40). For the boundary conditions, we set
Θ

n,k,i
c,h,disc · nK,σ = Θ

n,k,i
c,h,lin · nK,σ = Θ

n,k,i,ν
c,h,alg · nK,σ = 0

for σ ∈ E ext
h . Therefrom, we define ∀c ∈ C , the total flux

reconstruction Θ
n,k,i,ν
c,h by

Θ
n,k,i,ν
c,h := Θ

n,k,i
c,h,disc + Θ

n,k,i
c,h,lin + Θ

n,k,i,ν
c,h,alg. (59)

Remark 2 The component fluxes Θ
n,k,i
c,h,disc, Θ

n,k,i
c,h,lin,

Θ
n,k,i,ν
c,h,alg belong to H(div, �).

Note that it is possible in practice to change the definition
(58) (see [58] for a reconstruction based on a multigrid
structure).
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We have,

Proposition 2 Let 1 ≤ n ≤ Nt , a semismooth Newton
iteration k ≥ 1, and an algebraic solver iteration i ≥ 0 be
fixed and ν > 0. For all c ∈ C and for all K ∈ Th there
holds,
(

Qn
c,K − lc,K(Un,k−1)−ln−1

c,K +L n,k,i+ν
c,K

τn

−∇ ·Θn,k,i,ν
c,h , 1

)

K

= R
n,k,i+ν
c,K .

(60)

Proof Employing the definition of the total fluxes (59), the
definition of the component fluxes (56)–(58), and the Green
formula we get
(
−∇ · Θ

n,k,i,ν
c,h , 1

)

K
= −

∑

σ∈E int
K

F n,k,i+ν
c,K,σ .

Thus, equation (39) at iterate i + ν yields the desired result.

5.5 Phase pressure andmolar fraction
reconstructions

We present in this section the construction from the finite
volume unknowns of the discontinuous quadratic liquid
pressure and molar fraction of liquid hydrogen and next
their continuous quadratic interpolant so as to preserve the
physical properties imposed by the problem.

Let 1 ≤ n ≤ Nt , we define
(
ξ

n,k,i
h , ξ

g,n,k,i

h

)
∈ RT0(Th) ×

RT0(Th) such that ∀K ∈ Th and ∀σ ∈ E int
K such that

σ = K ∩ L

(
ξ

n,k,i
h · nK,σ , 1

)

σ
:= −|σ |P

n,k,i
L − P

n,k,i
K

dKL

,

(
ξ

g,n,k,i

h · nK, 1
)

σ
:= −|σ |P

g,n,k,i

L − P
g,n,k,i

K

dKL

,

with

P
g,n,k,i

K = P
n,k,i
K + Pcp(S

n,k,i
K ).

The discontinuous piecewise quadratic liquid phase pres-
sure P

n,k,i
h ∈ P

d
2(Th) is such that ∀K ∈ Th

(
−∇P

n,k,i
h

)
|K :=

(
ξ

n,k,i
h

)

K
and

(
P

n,k,i
h ,1

)

K

|K| := P
n,k,i
K .

while the discontinuous quadratic gas phase pressure
P

g,n,k,i

h ∈ P
d
2(Th) satisfies ∀K ∈ Th

(
−∇P

g,n,k,i

h

)
|K :=

(
ξ

g,n,k,i

h

)

K
, and

(
P

g,n,k,i

h , 1
)

K

|K| := P
g,n,k,i

K .

Until now, we have transformed a constant in each cells
onto a discontinuous P2 polynomial. This transformation
unfortunately does not give the global continuity in space so
that P

n,k,i
h and P

g,n,k,i

h do not belong to H 1(�). To do so,
we use the Oswald interpolation operator (see [46, 71]) that
associates to the discontinuous piecewise polynomial P

n,k,i
h

its conforming interpolant.
Then, from P

n,k,i
h ∈ P

d
2(Th), using the notations

introduced at the beginning of Section 3.1, we define
P̃

n,k,i
h ∈ P

c
2(Th) by

P̃
n,k,i
h (a) := 1

|Ta|
∑

K∈Ta

(
P

n,k,i
h

)
|K(a) for a ∈ D2.

(61)

In the same way, we reconstruct a continuous P
c
2(Th)

molar fraction as follows. Let 1 ≤ n ≤ Nt , we define
ν

n,k,i
h ∈ RT0(Th) such that ∀K ∈ Th and ∀σ ∈ E int

K such
that σ = K ∩ L,

(
ν

n,k,i
h · nK, 1

)

σ
:= −|σ |χ

n,k,i
L − χ

n,k,i
K

dKL

.

The discontinuous quadratic molar fraction χ
n,k,i
h is such

that ∀K ∈ Th,

(
−∇χ

n,k,i
h

)
|K :=

(
ν

n,k,i
h

)

K
and

(
χ

n,k,i
h , 1

)

K

|K| := χ
n,k,i
K .

From the discontinuous polynomial χ
n,k,i
h ∈ P

d
2(Th),

we construct its conforming interpolant, using the Oswald
interpolation operator as follows

χ̃
n,k,i
h (a) := 1

|Ta|
∑

K∈Ta

(
χ

n,k,i
h

)
|K(a) a ∈ D2. (62)

Remark 3 The constructions (61) and (62) give P̃
n,k,i
h and

χ̃
n,k,i
h ∈ H 1(�).

5.6 A posteriori error estimates

In this section we provide an upper bound for the error
measure defined in (53) at each semismooth step k ≥ 1 and
each algebraic iteration i ≥ 0. An important difficulty is
that during the iterations in i and k, the approximation is no
more conforming in the sense that the conditions

1−S
n,k,i
hτ ≥0, H

[
P

n,k,i
hτ + Pcp(S

n,k,i
hτ )

]
− β lχ

n,k,i
hτ ≥ 0,

[
1 − S

n,k,i
hτ

] [
H
[
P

n,k,i
hτ + Pcp(S

n,k,i
hτ )

]
− β lχ

n,k,i
hτ

]
= 0

do not necessarily hold.
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We define for all c ∈ C the estimators linked to the finite
volume discretization

η
n,k,i,ν
R,K,c := min

{
CPW, ε− 1

2

}
hK

∥
∥
∥
∥Q

n
c,K − 1

τn

×
[
lc,K(Un,k−1) − ln−1

c,K + L n,k,i+ν
c,K

]
− R

n,k,i+ν
c,K

|K| − ∇ · Θ
n,k,i,ν
c,h

∥
∥
∥
∥
∥

K

,

(63)

η
n,k,i,ν
F,K,c (t) :=

∥
∥
∥Θn,k,i,ν

c,h − Φ
n,k,i
c,hτ (t)

∥
∥
∥

K
t ∈ In, (64)

the estimators linked to the nonconformity of the liquid
pressure and the molar fraction of liquid hydrogen

η
n,k,i
NC,K,l,c(t) :=

∥
∥
∥Υ l,c(P

n,k,i
hτ )(t) − Υ l,c(P̃

n,k,i
hτ )(t)

∥
∥
∥

K

t ∈ In, c ∈ C ,

(65)

η
n,k,i
NC,K,χ (t) :=

∥
∥
∥Ψ (χ

n,k,i
hτ )(t) − Ψ (χ̃

n,k,i
hτ )(t)

∥
∥
∥

K

t ∈ In,
(66)

and the estimators linked respectively to the semismooth
linearization and linear algebra

η
n,k,i,ν
NA,K,c := ε− 1

2
hK

τn

×
∥
∥
∥lc,K(Un,k,i) − lc,K(Un,k−1) − L n,k,i+ν

c,K

∥
∥
∥

K
,

(67)

η
n,k,i,ν
rem,K,c := hK |K|−1ε− 1

2

∥
∥
∥Rn,k,i+ν

c,K

∥
∥
∥

K
. (68)

The estimators defined previously reflect various violations
of physical properties of the approximate numerical solution
Un,k,i : the residual estimator η

n,k,i,ν
R,K,c illustrates the fact that

the discrete flux reconstruction Θ
n,k,i,ν
c,h does not necessarily

satisfy exactly the first two lines of (14). Note that, when
the source term Qn

c,K is constant in time and space (Qn
c,K =

Qc), (60) leads to η
n,k,i,ν
R,K,c = 0. The flux estimator

η
n,k,i,ν
F,K,c given by (64) indicates how far is the flux at the

discrete level from the equilibrated flux reconstruction. It
is related to the temporal discretization, linearization, and
algebraic errors. Next, the nonconformity estimators (65)–
(66) show how far are the discrete discontinuous quadratic
liquid pressure and molar fraction of liquid hydrogen
from their interpolants in the energy space X. Finally, the
estimator (67) is the nonlinear accumulation estimator and
(68) is the algebraic remainder estimator. Observe that at
convergence of the semismooth solver and the iterative
algebraic solver (k → ∞, i → ∞), the estimators (67) and
(68) vanish.

The following result provides an upper bound for the
error measure (53) at each semismooth Newton step k ≥ 1
and each algebraic solver step i ≥ 0 of each time step
1 ≤ n ≤ Nt .

Theorem 3 Consider a time step 1 ≤ n ≤ Nt , a
semismooth Newton step k ≥ 1, an algebraic solver
steps i ≥ 0, and ν > 0 additional algebraic

iterations. Let
(
S

n,k,i
h , P

n,k,i
h , χ

n,k,i
h

)
be the approximate

solution and let Θ
n,k,i,ν
c,h , P̃

n,k,i
hτ , and χ̃

n,k,i
hτ be respectively

the equilibrated flux reconstructions defined by (59),
the liquid phase pressure reconstruction, and the molar
fraction reconstruction defined in Section 5.5 with the
convention (42). We have the following a posteriori error
estimate

N n,k,i ≤⎧
⎨

⎩

∑

c∈C

⎧
⎨

⎩

⎧
⎨

⎩

∫

In

∑

K∈Th

(
η

n,k,i,ν
R,K,c + η

n,k,i,ν
F,K,c (t) + η

n,k,i,ν
NA,K,c

+η
n,k,i,ν
rem,K,c

)2
dt

} 1
2 + ∥∥Qc − Qc,hτ

∥
∥

X′
n

}2
⎫
⎬

⎭

1
2

+Re(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ) +

⎧
⎨

⎩

∫

In

∑

K∈Th

⎧
⎨

⎩

∑

c∈C l

(
η

n,k,i
NC,K,l,c(t)

)2 +
(
η

n,k,i
NC,K,χ (t)

)2

⎫
⎬

⎭
dt

⎫
⎬

⎭

1
2

. (69)

Proof The proof follows the one presented in [29, Corollary
4.4] with the difference in the treatment of the algebraic
remainder and the presence of the residual associated to the
constraints. Let ϕ ∈ Xn such that ‖ϕ‖Xn

= 1. The residual
(51) is given by

〈Rc(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ), ϕ〉X′

n,Xn
=
∫

In

∑

K∈Th

AK(ϕ)(t) dt,

where

AK(ϕ) :=
(
Qc − ∂t l

n,k,i
c,hτ , ϕ

)

K
+
(
Φ

n,k,i
c,hτ , ∇ϕ

)

K
.

Using (60) and noting that Θ
n,k,i,ν
c,h ∈ H(div, �), we have

AK(ϕ) =(

Qn
c,K − lc,K(Un,k−1)−ln−1

c,K + L n,k,i+ν
c,K

τn

−∇ ·Θn,k,i,ν
c,h

−R
n,k,i+ν
c,K

|K| , ϕ

)

K

−
(
Θ

n,k,i,ν
c,h −Φ

n,k,i
c,hτ , ∇ϕ

)

K

−
(

∂n
t l

n,k,i
c,hτ − lc,K(Un,k−1)−ln−1

c,K + L n,k,i+ν
c,K

τn

, ϕ

)

K

−
(

1

|K|R
n,k,i+ν
c,K , ϕ

)

K

+(Qc−Qc,hτ , ϕ
)
K

.

(70)
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We bound separately each of the five terms in (70) denoted
by Aj,K(ϕ), j = 1, . . . , 5. Observe from the equilibration
property (60) that the first term A1,K(ϕ) in (70) is equal
to

A1,K(ϕ) :=
(

Qn
c,K − lc,K(Un,k−1) − ln−1

c,K + L n,k,i+ν
c,K

τn

−R
n,k,i+ν
c,K

|K| − ∇ · Θ
n,k,i,ν
c,h , ϕ − ϕK

)

K

, (71)

where ϕK is the mean value of ϕ on K ∈ Th. Next, we have
as a result of the Poincaré–Wirtinger inequality

∥
∥ϕ − ϕK

∥
∥

K
(t) ≤ hKCPW ‖∇ϕ‖K (t),

≤ hKCPW ‖ϕ‖X,K (t).

Furthermore, observe that

∥
∥ϕ − ϕK

∥
∥

K
(t) ≤ ‖ϕ‖K (t) = ε

1
2 ‖ϕ‖K (t)h−1

K

ε
1
2 h−1

K

,

≤ ‖ϕ‖X,K (t)

ε
1
2 h−1

K

. (72)

Combining (71)–(72) provides the following upper bound:

A1,K(ϕ) ≤ η
n,k,i,ν
R,K,c ‖ϕ‖X,K (t). (73)

Using the Cauchy–Schwarz inequality, the second term
A2,K(ϕ) of (70) is obviously bounded as

A2,K(ϕ) ≤ η
n,k,i,ν
F,K,c (t) ‖ϕ‖X,K (t). (74)

Concerning the third term A3,K(ϕ) of (70), observe first of
all, employing (19), that it is equal to

A3,K(ϕ) :=
(
lc,K(Un,k,i)−lc,K(Un,k−1)−L n,k,i+ν

c,K

τn

, ϕ

)

K

.

(75)

To bound (75), we use the Cauchy–Schwarz inequality
giving

A3,K(ϕ) ≤ η
n,k,i,ν
NA,K,cε

1
2 h−1

K ‖ϕ‖K ≤ η
n,k,i,ν
NA,K,c

‖ϕ‖X,K . (76)

To bound the space integral A4,K(ϕ) containing the
algebraic remainder, we employ the Cauchy–Schwarz
inequality and next the definition of the error measure (43)
to get

A4,K(ϕ) ≤ 1

|K|
∥
∥
∥Rn,k,i+ν

c,K

∥
∥
∥

K
ε− 1

2 hK ‖ϕ‖X,K (t),

= η
n,k,i,ν
rem,K,c ‖ϕ‖X,K (t).

(77)

Finally, concerning the last bound A5,K(ϕ) we use
∫

In

(
Qc − Qc,hτ , ϕ

)
�

(t) dt ≤ ∥∥Qc − Qc,hτ

∥
∥

X′
n
‖ϕ‖Xn

.

(78)

Thus, as ‖ϕ‖Xn
= 1, combining (70), (73), (74), (76), (77),

and (78) and using the Cauchy–Schwarz inequality, we get
∥
∥
∥Rc(S

n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ )

∥
∥
∥

X′
n

≤
⎧
⎨

⎩

∫

In

∑

K∈Th

(
η

n,k,i,ν
R,K,c + η

n,k,i,ν
F,K,c (t) + η

n,k,i,ν
NA,K,c

+η
n,k,i,ν
rem,K,c

)2
dt

} 1
2 + ∥∥Qc − Qc,hτ

∥
∥

X′
n

.

(79)

Next, as P̃
n,k,i
hτ ∈ Xn and χ̃

n,k,i
hτ ∈ Xn, we deduce from (54)

and (55) that

N n,k,i
P (P

n,k,i
hτ ) ≤

⎧
⎨

⎩

∑

c∈C l

∫

In

∑

K∈Th

(
η

n,k,i
NC,K,l,c(t)

)2
dt

⎫
⎬

⎭

1
2

(80)

and

N n,k,i
χ (χ

n,k,i
hτ ) ≤

⎧
⎨

⎩

∫

In

∑

K∈Th

(
η

n,k,i
NC,K,χ (t)

)2
dt

⎫
⎬

⎭

1
2

. (81)

Thus, combining (79)–(81) we get the desired result.

So far, we have established an a posteriori estimate
between the exact and the approximate solution. We
now provide an estimate distinguishing the different error
components. For this purpose, we additionally define the
positive and negative parts of each constraint as follows. For
A, any real number, we define

A = A+ + A−, with A+ := max (0, A) ≥ 0,

and A− := min (0, A) ≤ 0.
(82)

Definition 3 Let 1 ≤ n ≤ Nt be a time step, k ≥ 1 be
a semismooth Newton iteration, and i ≥ 0 be an algebraic
iteration. For any c ∈ C , we define the discretization
estimator, the linearization estimator, and the algebraic
estimator by

η
n,k,i,ν
disc

:= 2
1
2

⎧
⎨

⎩

∑

K∈Th

∫

In

{
∑

c∈C

(
η

n,k,i,ν
R,K,c

+
∥
∥
∥Θn,k,i

c,h,disc − Φ
n,k,i
c,hτ (t)

∥
∥
∥

K
+ η

n,k,i
NC,K,l,c(t)

)

+η
n,k,i
NC,K,χ (t)

}2
dt

} 1
2 + 1

α

∑

K∈Th

∫

In

η
n,k,i
P,K,pos(t) dt (83)

η
n,k,i
lin :=

⎧
⎨

⎩

∑

c∈C

τn

∑

K∈Th

(∥∥
∥Θn,k,i

c,h,lin

∥
∥
∥

K
+ η

n,k,i,ν
NA,K,c

)2

⎫
⎬

⎭

1
2

+ 1

α

∑

K∈Th

∫

In

η
n,k,i
P,K,neg(t) dt, (84)
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η
n,k,i,ν
alg :=

⎧
⎨

⎩

∑

c∈C

τn

∑

K∈Th

(∥∥
∥Θn,k,i,ν

c,h,alg

∥
∥
∥

K
+ η

n,k,i,ν
rem,K,c

)2

⎫
⎬

⎭

1
2

,

(85)

with

η
n,k,i
P,K,pos(t) :=

({
1 − S

n,k,i
hτ (t)

}+
,

{
H
[
P

n,k,i
hτ (t) + Pcp

(
S

n,k,i
hτ (t)

)]
− β lχ

n,k,i
hτ (t)

}+)

K

,

(86)

η
n,k,i
P,K,neg(t) :=

({
1 − S

n,k,i
hτ (t)

}−
,

{
H
[
P

n,k,i
hτ (t) + Pcp

(
S

n,k,i
hτ (t)

)]
− β lχ

n,k,i
hτ (t)

}−)

K

.

(87)

Remark 4 In Definition 3, we proposed three components
of the error constructed from the various estimators defined
in Section 5.6. Note that it is possible to bound the residual
Re following the decomposition (82) and employing the
property

A1A2 = [A+
1 + A−

1

] [
A+

2 + A−
2

] ≤ A+
1 A+

2 + A−
1 A−

2 . (88)

The phase transition estimators η
n,k,i
P,K,pos(t) and η

n,k,i
P,K,neg(t)

given by (86) and (87) are new to the best of our knowledge
and give a control on the violation of the constraints: they
evaluate the error due to the physical phase change between
the liquid and the liquid–gas phase. At convergence of the
semismooth and linear algebraic solver (k → ∞, i → ∞)
η

n,∞,∞
P,K,neg(t) = 0. Observe that when the gas phase appears

in the triangle K , the estimator η
n,∞,∞
P,K,pos(t) is positive on the

time interval corresponding to the state change. Otherwise
it is vanishing. Therefore, our approach is heuristic in the
sense that at convergence of the iterative algebraic solver
and the semismooth solver η

n,k,i
lin → 0 and η

n,k,i,ν
alg →

0. Note that the algebraic remainder estimator is always

positive then when added to
∥
∥
∥Θn,k,i,ν

c,h,alg

∥
∥
∥

K
provides a non

vanishing global algebraic estimator at the beginning of the
iterations.

Corollary 1 For a given time step 1 ≤ n ≤ Nt , a
semismooth Newton iteration k ≥ 1, an algebraic iteration
i ≥ 0, and ν > 0 additional algebraic sover steps, consider
the estimators defined by (83)–(85). Assume moreover that
the source term Qc is piecewise constant in space and time.
Then, we have

N n,k,i ≤ η
n,k,i,ν
disc + η

n,k,i
lin + η

n,k,i,ν
alg .

Proof The triangle inequality applied on the flux estimator
gives

η
n,k,i,ν
F,K,c (t) ≤

∥
∥
∥Θn,k,i

c,h,disc − Φ
n,k,i
c,hτ (t)

∥
∥
∥

K
+
∥
∥
∥Θn,k,i

c,h,lin

∥
∥
∥

K

+
∥
∥
∥Θn,k,i,ν

c,h,alg

∥
∥
∥

K
.

(89)

Plugging (89) in (69), and using after the Minkowski
inequality to separate each component fluxes and each
nonconform estimators provides the following bound for
(69)

N n,k,i ≤
⎧
⎨

⎩

∑

c∈C

∫

In

∑

K∈Th

(
η

n,k,i,ν
R,K,c

+
∥
∥
∥Θn,k,i

c,h,disc − Φ
n,k,i
c,hτ (t)

∥
∥
∥

K

)2
dt

} 1
2

+Re(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ )

+
⎧
⎨

⎩

∫

In

∑

K∈Th

⎧
⎨

⎩

∑

c∈C l

(
η

n,k,i
NC,K,l,c(t)

)2

+
(
η

n,k,i
NC,K,χ (t)

)2
}

dt

} 1
2

+
⎧
⎨

⎩

∑

c∈C

τn

∑

K∈Th

(∥∥
∥Θn,k,i

c,h,lin

∥
∥
∥

K
+ η

n,k,i,ν
NA,K,c

)2

⎫
⎬

⎭

1
2

+η
n,k,i,ν
alg . (90)

To bound Re(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ) we employ (88) to get

Re(S
n,k,i
hτ , P

n,k,i
hτ , χ

n,k,i
hτ ) ≤ 1

α

∫

In

∑

K∈Th

(
η

n,k,i
P,K,pos + η

n,k,i
P,K,neg

)
dt.

To conclude, it remains to bound the sum of the first and
third term of (90). To do so, we employ the inequality
⎛

⎝
r∑

q=1

X2
q

⎞

⎠

1
2

+
⎛

⎝
r∑

q=1

Y 2
q

⎞

⎠

1
2

≤
⎛

⎝2
r∑

q=1

(
X2

q + Y 2
q

)
⎞

⎠

1
2

for all

Xq, Yq ≥ 0 and next the identity A2 + B2 ≤ (A + B)2 for
all A, B ≥ 0 to obtain the desired result.

5.7 Adaptive inexact semismooth Newtonmethod
using adaptive stopping criteria

In this section, we develop an adaptive inexact semismooth
Newton method. In the spirit of [5, 26, 32, 54], it is designed
to perform the linearization and algebraic resolution with
minimal necessary precision and thus to avoid unnecessary
iterations. We rely on Corollary 1 that estimates the different
error components.

We define γlin and γalg as two positive parameters
representing the desired relative size of the algebraic and
linearization errors. We propose the following stopping
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criteria, balancing globally the algebraic, linearization, and
discretization error components for our adaptive algorithm
(see Algorithm 1)

(a) η
n,k,i,ν
alg ≤γalg max

{
η

n,k,i,ν
disc , η

n,k,i
lin

}
, (b) η

n,k,i
lin ≤ γlinη

n,k,i,ν
disc .

(91)

We propose the following adaptive inexact semismooth
algorithm:

Algorithm 1 Adaptive inexact semismooth Newton algo-
rithm.

0. Choose an initial vector Un,0 ∈ R
3Nsp and set k = 1.

1. From Un,k−1 define A
n,k−1 ∈ R

3Nsp,3Nsp and
Bn,k−1 ∈ R

3Nsp by (36) and (37).
2. Consider the linear system

A
n,k−1Un,k = Bn,k−1. (92)

3. Set Un,k,0 = Un,k−1 as initial guess for the iterative
linear solver, set i = 0.

4a. Perform ν ≥ 1 steps of a chosen linear solver
for (92), starting from Un,k,i .

This yields on step i + ν an approximation Un,k,i+ν to
Un,k satisfying

A
n,k−1Un,k,i+ν = Bn,k−1 − Rn,k,i+ν .

4b. Compute the estimators of Definition 3 and
check the stopping criterion for the linear solver in the
form (91)(a). Set i = i+ν. If satisfied, set Un,k = Un,k,i .
If not go back to 4a.

5. Check the stopping criterion for the nonlinear solver
in the form (91)(b). If satisfied, return Un = Un,k . If not,
set k = k + 1 and go back to 1.

6 Numerical experiments

6.1 Setting

This section illustrates numerically our theoretical devel-
opments. We use the Couplex-gas benchmark proposed by
Andra (French National Inventory of Radioactive Materials
and Waste)1 and the research group MoMaS (Mathemati-
cal Modeling and Numerical Simulation for Nuclear Waste
Management Problems)2.

1http://www.andra.fr/international/
2http://www.gdrmomas.org/ex qualifications.html/

We consider a homogeneous porous medium � in one
dimension supposed to be horizontal with length L =
200 m. Its constant porosity is fixed to φ = 0.15 and
its constant absolute permeability is equal to K = 5 ×
10−20 m2. The porous medium is initially saturated with
liquid (Sl = 1) and contains no hydrogen (χ l

h = 0). We
assume that gaseous hydrogen is injected constantly in time
in the first cell K1 (Qn

h,K1
= 5.57 × 10−6 kg/m2/year) and

the water flow rate is zero. We have homogeneous Neumann
boundary conditions on the left of the domain. For boundary
conditions on the right, we assume that the gas injected will
never reach the end of the domain, thus Dirichlet conditions
are prescribed (Sl = 1, P l = 106Pa, χ l

h = 0). As we
consider a horizontal 1D case, gravitational effects are not
taken into account in the numerical tests. The dynamic
liquid phase viscosity μl = 10−9 Pa · s, the dynamic gas
phase viscosity μg = 9 × 10−9 Pa · s, the molar mass of
water Mw = 10−2 kg · mol−1, the molar mass of hydrogen
Mh = 2 × 10−3 kg · mol−1, the molar density of water
ρl

w = 103 kg · m−3, the molecular diffusion coefficient
Dl

h = 3 × 10−9 m · s−1, and Henry’s constant H̃ = 7.65 ×
10−6 mol Pa−1 · m−3. We consider for the capillary pressure
Pcp and the relative permeability of the liquid phase kl

r and
gas phase k

g
r the Van Genuchten–Mualem model:

Pcp(S
l) = Pr

(

S
− 1

m

le − 1

) 1
n∗

,

kl
r(S

l) = √
Sle

(

1 −
(

1 − S
1
m

le

)m)2

,

k
g
r (Sl) = √

1 − Sle

(

1 − S
1
m

le

)2m

,

with

Sle = Sl − Sl
res

1 − Sl
res − S

g
res

and m = 1 − 1

n∗ .

Here Pr = 2 × 106Pa is the reference pressure, n∗ = 1.49
is a parameter depending on the porous medium, and Sl

res =
0.4, S

g
res = 0 are respectively the residual liquid saturation

and residual gas saturation (see for more details [18]). We
consider a uniform spatial mesh (Nsp = 1000 elements) and
we use a constant time step τn = 5000 years ∀1 ≤ n ≤ Nt .
The final time of simulation is tF = 5 × 105 years and the
rescaling constant α = 2500 years.

We consider two different semismooth Newton solvers.
We first employ the Newton-min algorithm combined with
the GMRES linear iterative algebraic solver for the system
(35). Next, we employ the Newton–Fischer–Burmeister
algorithm in combination with the GMRES solver. In both
cases, an ILU preconditionner is used to speed up the
GMRES solver. Other possibilities for preconditionners
can be found in [50] and the references therein. For the
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computation of the algebraic flux reconstruction Θ
n,k,i,ν
c,h,alg,

we use (58) with ν = 1. We also define the algebraic and
linearization residuals by

R
n,k,i
alg := Bn,k−1 − A

n,k−1Un,k,i , (93)

R
n,k,i
lin :=

[
H n(Un,k,i)

C n(Un,k,i)

]

, (94)

where the nonlinear operators H n and C n are defined in
(30) and (33).

Three different approaches are tested:

1. The exact semismooth Newton method. Here, both the
linear and nonlinear solvers are iterated to “almost”
convergence. More precisely, we take εalg = 10−12

and εlin = 10−7 and replace respectively the stopping
criteria (91) of Algorithm 1 by criteria on the relative
residuals,

(a)

∥
∥
∥Rn,k,i

alg

∥
∥
∥

∥
∥Bn,k−1

∥
∥ ≤ εalg, (b)

∥
∥
∥Rn,k,i

lin

∥
∥
∥

∥
∥F (Un,0)

∥
∥ ≤ εlin.

(95)

2. The inexact semismooth Newton method. Here, (35)
is solved only approximately. We use the following
stopping criterion replacing (95)(a) for the iterative
algebraic solver:

(a)

∥
∥
∥Rn,k,i

alg

∥
∥
∥

∥
∥Bn,k−1

∥
∥ ≤ �k . (96)

In the literature, �k is called the “forcing term” and
under the assumption that the sequence (�k)k≥1 is
uniformly less than 1, inexact Newton methods are
locally convergent (see [27, 47]). We choose

�k = 1

2k

∥
∥
∥Rn,k,i

lin

∥
∥
∥

∥
∥F (Un,0)

∥
∥ . (97)

Concerning the stopping criterion for the semismooth
Newton solver, we keep (95) (b).

3) The adaptive inexact semismooth Newton method (see
Algorithm 1) that relies on the stopping criteria (91)(a)
and (91)(b) with γalg = 10−3 and γlin = 10−3.

For the three methods, the criteria are computed every
ν = 1 linear iteration. In the sequel, when the stopping
criterion of the nonlinear solver is satisfied, the index k will
be denoted by k, and similarly the index i at the various
stopping criteria will be denoted by i.

6.2 Newton-min

We consider the 2 × Nsp equations given by the cell-
centered finite volume discretization (28), where we recall

that Nsp equations correspond to each component c ∈ C .
The nonlinear complementarity constraints are reformulated
thanks to the semismooth min function as follows: ∀K ∈
Th, ∀1 ≤ n ≤ Nt

1 − Sn
K ≥ 0, H

[
P n

K + Pcp(S
n
K)
]− β lχn

K ≥ 0,[
1 − Sn

K

] [
H
[
P n

K + Pcp(S
n
K)
]− β lχn

K

] = 0,

⇐⇒ min
(
1 − Sn

K, H
[
P n

K + Pcp(S
n
K)
]− β lχn

K

) = 0.

We then employ the Newton-min solver to treat the
nonlinearities.

Figure 1 displays the behavior of the solution at time
t = 1.05 × 105 years (corresponding to a two-phase
regime) when the Newton-min and the GMRES solvers
have converged. We observe from the three figures that the
liquid pressure and the molar fraction of liquid hydrogen
have increased almost everywhere and that the gas has
spread in several cells of the domain. It is characteristic of a
two-phase flow after appearance of the gas phase.

Figure 2 shows the possible violations of the nonlinear
complementarity constraints during the iterations at the time
step t = 5 × 104 years (see the beginning of Section 5.6).
We have represented in the left figure the negative part of

the saturation constraint
{

1 − S
n,k,i
hτ

}−
and we observe its

negativity in several cells. The same phenomenon occurs for
the constraint given by Henry’s law (see the right figure).

In Fig. 3, we have displayed the behavior of the phase
transition estimator η

n,k,i
P,K,pos(t) as a function of the abscissa

at convergence (k = k, i = i). We recall that η
n,k,i
P,K,pos(t

n) =
0 for all endpoints of all intervals In, 1 ≤ n ≤ Nt (see (86)–
(87)) so the estimator is shown in the middle of the time
interval In, denoted by t�n . In the left figure, we have chosen
I1 (t�1 = 2500 years), during which there is only one liquid

phase and one observes that η
n,k,i
P,K (t) = 0 over all t ∈ I1. On

the middle figure, the estimator is shown at t�3 = 1.25 × 104

years (corresponding time interval I3). It corresponds to the
time interval when the gas phase starts to appear in the
leftmost cell, which can be observed on the estimator. Then,
in several cells close to the left boundary, we observe a peak
corresponding to the activation of the two constraints 1 −
S

n,k,i
hτ (·, t�3 ) > 0 and H

[
P

n,k,i
hτ (·, t�3 ) + Pcp(S

n,k,i
hτ (·, t�3 ))

]
−

β lχ
n,k,i
hτ (·, t�3 ) > 0, then the nonnegativity of the estimator.

In the right figure, the estimator η
n,k,i
P,K (t�9 ) is shown at t�9 =

4.25×104 years, when the flow is two-phase liquid–gas. We
see the localization (near 45 m) of the gas phase appearance
on the domain � by a peak. Thus, the front between the
one-phase and the two-phase regimes can be clearly noted
thanks to the estimator.

Remark 5 From this example, one can see that this
estimator detects the error caused by the appearance of the
gas phase whenever the gas spreads throughout the domain.
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Fig. 1 Solution at convergence (k = k, i = i) for Nsp = 1000 elements at t = 1.05 × 105 years. Left: saturation of the phases, middle: pressure
of the liquid phase, right: molar fraction of liquid hydrogen
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Fig. 2 Complementarity constraints (k = 4, i = 2) at time t = 5 × 104 years. Left: negative part of the saturation constraint, right: negative part
of Henry’s constraint
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Fig. 3 Phase transition estimator η
n,k,i
P,K,pos at convergence (k = k, i = i). Left: one-phase liquid. middle: appearance of gas phase, right: two-phase

liquid–gas
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Fig. 4 Estimators as a function of the Newton-min iterates k, (i = i) at t = 1.05 × 105. Exact (left), inexact (middle), and adaptive inexact (right)
Newton-min methods

It gives important tools for adaptive mesh refinement
strategy that will be considered in a future work.

Figure 4 represents at the fixed time value t = 1.05 ×
105 years the evolution of the various estimators and

the behavior of the nonrelative residuals
∥
∥
∥Rn,k,i

lin

∥
∥
∥ and

∥
∥
∥Rn,k,i

alg

∥
∥
∥ given by (93) and (94) as a function of the

Newton-min iterations when the stopping criteria (95)(a)–
(95)(b), (96)(a)–(95)(b), and (91)(a)–(91)(b) respectively
have been satisfied (1000 elements, k varies, i = i). In the
exact resolution case, the discretization estimator globally
dominates and coincides with the total estimator (the red
and green curves are superimposed). The linearization
estimator is small and decreases rapidly after k = 6. The
algebraic estimator is small and takes values between 10−6

and 10−12. Observe that the behavior of the linearization
estimator (respectively algebraic estimator) mimics the one
of the linearization residual (respectively algebraic residual)
up to an important roughly constant shift. Note that the
stopping criteria for exact and inexact Newton-min are
based on the relative linearization and algebraic residuals
(see (95)(a)–(95(b)) which do not correspond to the curves

of
∥
∥
∥Rn,k,i

lin

∥
∥
∥ and

∥
∥
∥Rn,k,i

alg

∥
∥
∥ that are nonrelative residuals.

From the first Newton-min iteration, the discretization
estimator is more or less constant, which means that the

other components of the error do not influence the behavior
of the total error estimator. Therefore, the semismooth
linearization iterations can be stopped at the first Newton-
min step. This is precisely the situation described the by
our adaptive inexact Newton-min (figure on the right). We
have displayed in the figure in the middle the number
of Newton-min iterations required to satisfy the inexact
stopping criterion (95) (b). We observe that the inexact
method requires more semismooth Newton-min iterations to
converge (14 iterations) than the exact one.

Figure 5 shows the evolution of the various estimators

and the behavior of
∥
∥
∥Rn,k,i

lin

∥
∥
∥ and

∥
∥
∥Rn,k,i

alg

∥
∥
∥ given by (93) and

(94) during the algebraic iterations of the first Newton-min
step (1000 elements, k = 1, i varies). In the three methods,
the algebraic estimator is dominant and dominates the
total estimator whereas the discretization and linearization
estimators roughly stagnate. We observe that 3 GMRES
iterations are needed to achieve the stopping criterion
(95)(a) whereas in the inexact and adaptive inexact cases, 1
iteration and 3 iterations respectively are required to satisfy
the stopping criteria (96)(a) and (91)(a). For the three
methods, the estimators are computed every ν = 1 iteration.

In Fig. 6, the number of Newton-min iterations and
the total number of GMRES iterations required to satisfy
the various stopping criteria at each time step of the
simulation are displayed . In particular, the first graph shows
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Fig. 5 Estimators as a function of the algebraic iterations i for k = 1 at t = 1.05 × 105. Exact (left), inexact (middle), and adaptive inexact (right)
semismooth Newton-min methods
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Fig. 6 Number of Newton-min iterations at each time step (left), number of GMRES iterations at each time step (right)

that the inexact Newton-min method requires many more
semismooth iterations to converge in comparison with the
other methods. The second graph of Fig. 6 shows that the
exact Newton-min method is globally the most expensive
method in terms of linear algebraic iterations and adaptive
inexact Newton-min method is the cheapest one.

Figure 7 illustrates the overall performance of the three
approaches. In the first graph, the cumulated number of
Newton-min iterations for the three methods is displayed
as a function of the time steps. The inexact Newton-min
method requires approximately 1000 Newton-min iterations
in total whereas exact Newton-min and adaptive inexact
Newton-min require 550 iterations and 100 iterations
respectively. The right part of Fig. 7 focuses on the
cumulated number of GMRES iterations for each method
as a function of the time step. The adaptive inexact
Newton-min method is the least expensive since it requires
approximately 500 iterations whereas inexact Newton-min
and adaptive inexact Newton-min require 3000 iterations
and 6000 iterations respectively, to finish the simulation.

Thus, globally our approach yields an economy by a factor
of roughly 6 with respect to inexact Newton-min and
roughly 12 with respect to exact Newton-min in terms of
total algebraic solver iterations.

In the three first graphs of Fig. 8, the behavior of the
solution at convergence (k = k, i = i) at the selected
time t = 1.05 × 105 years for the exact Newton-min
resolution and adaptive inexact Newton-min resolution with
the weights γalg = γlin = 10−3 is displayed. We observe a
non-consistency zone for the three graphs explained by the
nonlinear stopping criterion in adaptive inexact resolution
that stops earlier the semismooth iterations. The next three
graphs of Fig. 8 show that at a time close to the final
simulation time (t = 3.5 × 105 years), the curves of the
solutions given by exact Newton-min and adaptive inexact
Newton-min almost coincide. Thus, our adaptive inexact
semimooth Newton algorithm saves many Newton-min and
GMRES iterations and generates a solution whose precision
does not differ from the exact one more than by a fraction
of the discretization error.
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Fig. 7 Cumulated number of Newton-min iterations as a function of time (left), and cumulated number of GMRES iterations as a function of time
(right)
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Fig. 8 Gas saturation (top left), liquid pressure (top middle), and molar
fraction of liquid hydrogen (top right) for exact Newton-min and adap-
tive inexact Newton-min at convergence at t = 1.05 × 105 years. Gas

saturation (bottom left), liquid pressure (bottom middle), and molar
fraction of liquid hydrogen (bottom right) for exact Newton-min and
adaptive inexact Newton-min at convergence at t = 3.5 × 105 years

6.3 Complements

In this section, we carry out numerical simulations
supplementing the previous results. We test the influence of
the weights γlin and γalg on our adaptive inexact semismooth
methodology. We also propose a modified version of the
inexact Newton-min algorithm where �k = 10−4 for
all Newton-min iterations k (see (97)) and εlin = 10−2,
and we compare the obtained result with our adaptive
inexact Newton-min approach. We also briefly provide
results for the adaptive inexact Newton–Fischer–Burmesiter
algorithm.

In Table 1, we give the cumulated number of Newton-
min iterations and GMRES iterations to reach the end of the
simulation for different weights γalg and γlin. We observe
that decreasing the values of the weights will increase the
number of required iterations and increasing the values of
the weights, for example (γalg, γlin) = (10−1, 10−1), will
decrease the required number of iterations.

In Fig. 9, we test the influence of the weight γlin on the
behavior of the solution. We take γlin = 10−6, γalg = 10−3,
and the time value close to the beginning of the simulation
t = 1.05 × 105 years when the semismooth Newton solver
and the GMRES solver have converged (k = k, i = i).
Recall that in Fig. 8, we considered the same time instant
but with γlin = 10−3. We thus see that the solution given
by exact Newton-min and adaptive inexact Newton-min are
almost identical with γlin = 10−6. From this example, we
deduce that for a time step close to the beginning of the
simulation, it is possible to increase the precision in the
adaptive inexact resolution by decreasing the value of the
weight γlin. Besides, even taking the smallest values for the
weights γlin and γalg, (γlin = γalg = 10−6) will obviously
increase the cumulated number of GMRES iterations (2019
iterations see Table 1) and increase the accuracy but, the
adaptive strategy is still economic in comparison to exact
Newton-min resolution that requires 6000 iterations (see
Fig. 7).

Table 1 Total number of linear
and nonlinear iterations for
adaptive inexact Newton-min
method for several parameters
γalg and γlin

(
γalg, γlin

)
Cumulated Newton-min iterations Cumulated GMRES iterations

(10−1, 10−1) 100 366

(10−3, 10−3) 113 427

(10−6, 10−3) 108 967

(10−3, 10−6) 351 1682

(10−6, 10−6) 308 2019
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Fig. 9 Gas saturation (left) and liquid pressure (right) for exact Newton-min and adaptive inexact Newton-min at convergence at time t =
1.05 × 105 years with γalg = 10−3 and γlin = 10−6. The two curves superimpose
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Fig. 12 Relative norm of the algebraic residual when the stopping criterion (91) (a) is satisfied (left) and relative norm of the linearization residual
when the stopping criterion (91) (b) is satisfied (right), adaptive inexact Newton-min resolution

In Fig. 10, we illustrate the numerical solution (gas
saturation) in the case of the exact Newton-min resolution,
the inexact Newton-min resolution with �k = 10−4

and εlin = 10−2, and the adaptive inexact Newton-min
resolution of Algorithm 1 with γalg = γlin = 10−3, for the
selected time values t = 1.05 × 105 years and 3.5 × 105

years. We observe that the numerical solution given by
the inexact resolution is more accurate than the numerical
solution given by the adaptive inexact resolution at time t =
1.05 × 105 years. However, at the time value t = 3.5 × 105

years, the numerical solutions are visually identical.
In Fig. 11, we show the cumulated number of GMRES

iterations for three methods as well as the number of
required Newton-min iterations at each time step to
converge for the inexact Newton-min strategy (�k =
10−4 and εlin = 10−2). We observe an interesting fact:
the inexact Newton-min method requires roughly 7 times
more cumulated GMRES iterations to converge than the
adaptive approach. Note also that at some time instants,
the exact Newton-min strategy is cheaper in terms of the
cumulated GMRES iterations than the inexact Newton-
min approach. This surprising result is explained by the
fact that the imposed stopping criterion (�k = 10−4) is
less adequate than the one provided in (97) and thus, the
resolution requires more Newton-min iterations at several
time step as it is shown in Fig.11 (right). Thus, our adaptive
inexact strategy looks as a good compromise as it does not

denaturate the numerical solution, preserves the accuracy,
and is very economic.

In Fig. 12, we plot the relative norm of the algebraic
residual at each Newton-min step within each time step
and the relative norm of the linearization residual at each
time step for our adaptive inexact Newton-min resolution
of Algorithm 1 with γalg = γlin = 10−3. We see from
the right part of Fig.12 that the relative norm of the
linearization residual is quite large during the first half of
the time iterations. Note that the adaptive criteria based
on the estimators are met despite these large residuals
(we recall there can be a large shift between linearization
residual and linearization estimators curves, see Fig. 4). This
explains why the solution given by this inexact Newton-min
resolution with the criteria �k = 10−4 and εlin = 10−2

is more accurate than the solution given by our adaptive
approach at t = 1.05 × 105 years.

Overall, however, the adaptive inexact Algorithm 1
allows to find automatically the suitable (relative) balance
between the error components, which results into variable
absolute values of the relative linearization and relative
algebraic residuals observed in Fig. 12, and leads to a good
compromise between the accuracy and the computational
cost.

To conclude this section, we present some results
obtained by the Newton–Fischer–Burmeister algorithm. In
this case, the nonlinear complementarity constraints can be

Table 2 Total number of
nonlinear and linear iterations
for the adaptive inexact
Newton–Fischer–Burmeister
method for several parameters
γalg and γlin and for the exact
Newton–Fischer–Burmeister
method

(
γalg, γlin

)
Cumulated number of Cumulated number of

Newton–Fischer–Burmeister iterations GMRES iterations

(
10−1, 10−1

)
100 428

(
10−3, 10−3

)
119 751

(
10−3, 10−6

)
482 2074

(
10−6, 10−3

)
117 1694

Exact resolution 757 10089
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reformulated thanks to the semismooth Fischer–Burmeister
function (see 32) as follows: ∀K ∈ Th, ∀1 ≤ n ≤ Nt ,

1 − Sn
K ≥ 0, H

[
P n

K + Pcp(S
n
K)
]− β lχn

K ≥ 0,[
1 − Sn

K

] [
H
[
P n

K + Pcp(S
n
K)
]− β lχn

K

] = 0,

⇐⇒ fFB(1 − Sn
K, H

[
P n

K + Pcp(S
n
K)
]− β lχn

K) = 0.

Table 2 provides the behavior of the exact Newton–
Fischer–Burmeister algorithm and of the adaptive inexact
Newton–Fischer–Burmeister algorithm for several weights
γalg and γlin. The adaptive strategy gives suitable results as
it roughly saves 90% of the iterations in comparison with
the exact resolution. Furthermore, we can observe that exact
and adaptive inexact Newton-min provides better results
in terms of computational cost than exact and adaptive
inexact Newton–Fischer–Burmeister. This observation is in
agreement with the fast convergence rate of the Newton-min
algorithm [12, 37, 38].

7 Conclusion

We have studied a compositional two-phase liquid–gas
flow with appearance/disappearance of the gas phase.
We have employed the semismooth theory to treat the
nonlinearities in the complementarity constraints. We have
devised a posteriori error estimates between the exact
and approximate solution, in particular when the phase
transition occurs and we have distinguished the different
error components. In the numerical experiments, we have
tested the quality of our adaptive strategy. In particular, the
results confirmed the strength of this approach.
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44. Jiránek, P., Strakoš, Z., Vohralı́k, M.: A posteriori error estimates
including algebraic error and stopping criteria for iterative solvers.
SIAM J. Sci. Comput. 32(3), 1567–1590 (2010). https://doi.org/
10.1137/08073706X

45. Kanzow, C.: Inexact semismooth Newton methods for large-scale
complementarity problems. Optim. Methods Softw. 19(3–4), 309–
325 (2004). https://doi.org/10.1080/10556780310001636369. The
First International Conference on Optimization Methods and
Software. Part II

46. Karakashian, O.A., Pascal, F.: A posteriori error estimates for
a discontinuous Galerkin approximation of second-order elliptic
problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003).
https://doi.org/10.1137/S0036142902405217

47. Kelley, C.T.: Iterative Methods for Linear and Nonlinear
Equations. Frontiers in Applied Mathematics, vol. 16. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

48. Kornhuber, R.: A posteriori error estimates for elliptic varia-
tional inequalities. Comput. Math. Appl. 31(8), 49–60 (1996).
https://doi.org/10.1016/0898-1221(96)00030-2

49. Kroener, D., Luckhaus, S.: Flow of oil and water in a porous
medium. J. Diff. Equ. 55(2), 276–288 (1984). https://doi.org/10.
1016/0022-0396(84)90084-6

50. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative
solution methods for modeling multiphase flow in porous media
fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003).
https://doi.org/10.1137/S106482750240443X
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