
Journal of Scientific Computing (2020) 84:28
https://doi.org/10.1007/s10915-020-01264-3

Adaptive Inexact Semismooth Newton Methods for the
Contact Problem Between TwoMembranes

Jad Dabaghi1,2 · Vincent Martin3 ·Martin Vohralík1,2

Received: 19 October 2018 / Revised: 14 April 2020 / Accepted: 14 June 2020 / Published online: 21 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We propose an adaptive inexact version of a class of semismooth Newton methods that is
aware of the continuous (variational) level. As a model problem, we study the system of
variational inequalities describing the contact between two membranes. This problem is dis-
cretized with conforming finite elements of order p ≥ 1, yielding a nonlinear algebraic
system with inequalities. We consider any iterative semismooth linearization algorithm like
the Newton-min or the Newton–Fischer–Burmeister which we complement by any iterative
linear algebraic solver. We then derive an a posteriori estimate on the error between the exact
solution at the continuous level and the approximate solution which is valid at any step of
the linearization and algebraic resolutions. Our estimate is based on flux reconstructions in
discrete subspaces of H(div,�) and on potential reconstructions in discrete subspaces of
H1(�) satisfying the constraints. It distinguishes the discretization, linearization, and alge-
braic components of the error. Consequently, we can formulate adaptive stopping criteria for
both solvers, giving rise to an adaptive version of the considered inexact semismooth Newton
algorithm. Under these criteria, the efficiency of the leading estimates is also established,
meaning that we prove them equivalent with the error up to a generic constant. Numerical
experiments for the Newton-min algorithm in combination with the GMRES algebraic solver
confirm the efficiency of the developed adaptive method.
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1 Introduction

Consider a system of algebraic inequalities written in the following form: find a vector
Xh ∈ R

n , such that

EXh = F,

K (Xh) ≥ 0, G(Xh) ≥ 0, K (Xh) · G(Xh) = 0,
(1)

where, for some integers n > 1 and 0 < m < n, E ∈ R
n−m,n is a matrix, K : R

n → R
m

and G : R
n → R

m are affine operators, and F ∈ R
n−m is a given vector. The first line of (1)

typically represents the discretization of a linear partial differential equation (PDE) [themodel
example for this study is described further in (6)]. The second line of (1) represents linear
complementarity constraints and states that the vectors K (Xh) and G(Xh) have non-negative
components and are orthogonal. Numerous algorithms have been developed in the past for
the approximate solution of (1), see for example the overview of Facchinei and Pang [26,27]
and the books of Bonnans et al. [8], Ito and Kunisch [33], and Ulbrich [50]. In particular,
we mention the approach by interior point method of Wright [54], the active set strategy by
Kanzow [36], and the primal-dual active set strategy, closely linked to semismooth Newton
methods, see Hintermüler et al. [29,32]. Alternatively, in [31,34,40,48,49,51], a sequence of
regularized problems is solved, coupled to a path-following strategy to choose the associated
parameter.

The approach that we use here is to rewrite directly the complementarity conditions
in the second line of (1) as a system of nonsmooth nonlinear equations by means of
C-functions, see [7,20,26,27]. TheC-functions are not smooth in the classical sense (Fréchet-
differentiable), but admit a weaker smoothness (the Clarke derivative), cf. [17]. This yields
an equivalent formulation of (1) that requests to find a vector Xh ∈ R

n such that

S (Xh) = 0, (2)

where S : R
n → R

n is a nonlinear non-differentiable function. Next, let any semismooth
nonlinear solver be applied to system (2), yielding at step k ≥ 1 a linear system

A
k−1Xk

h = Bk−1, (3)

where A
k−1 ∈ R

n,n is a matrix and Bk−1 ∈ R
n is a vector. Finally, let any iterative algebraic

solver be applied to (3), yielding at step i ≥ 1 an approximation Xk,i
h to Xh . Note that X

k,i
h

does not solve (3) but only
A
k−1Xk,i

h = Bk−1 − Rk,i , (4)

where Rk,i := Bk−1 −A
k−1Xk,i

h ∈ R
n is the algebraic residual vector of (3). Similarly, Xk,i

h

does not solve (2) as S (Xk,i
h ) �= 0 in general.

Our first goal is to perform an a posteriori analysis of problem (1), where the matrix E

is given by a discretization of the underlying PDE. We are namely interested in deriving a
fully computable upper bound on the energy error e(Xk,i

h ) between the approximate solution

associated with the algebraic vector Xk,i
h and the unknown solution of the continuous-level

variational inequality in the form

e(Xk,i
h ) ≤ η(Xk,i

h ) = η
k,i
disc + η

k,i
lin + η

k,i
alg. (5)
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Here, the a posteriori error estimate η(Xk,i
h ) is fully computable from Xk,i

h at each step k ≥ 1,

i ≥ 1. As our second goal, we distinguish in η(Xk,i
h ) the components of the error caused by

the discretization, the linearization, and the algebraic resolution. Finally, our third goal is to
conceive an adaptive inexact algorithm based on a posteriori stopping criteria. These request
to stop the algebraic (respectively linearization) solver whenever the algebraic estimator η

k,i
alg

(respectively the linearization estimator η
k,i
lin ) does not contribute significantly to the overall

estimator η(Xk,i
h ). We thus propose an answer the two following practical questions: (1) To

which precision should (3) and (2) be solved? (2) What is the error in Xk,i
h ?

Our general viewpoint is that if one uses a semismooth Newton method (4), then the
adaptive inexact algorithm based on the estimates (5) may bring an important computational
speed-up, in addition to the fact that the overall error can be assessed at anymoment. Actually,
the proposed a posteriori error analysis, aware of the PDE level, may steer the semismooth
Newton method rather differently than what is usual. For instance, in our approach, one may
not reach at all the region of the fast (quadratic/superlinear) convergence of the semismooth
Newton method, since the total error is dominated by the discretization error component
and our adaptive algorithm stops the semismooth Newton iterations prior to entering the fast
convergence zone, see, e.g., the right plot in Fig. 5 below. Note also that we do not employ
here any regularization.

An important amount of work has been performed in the last years on a posteriori analysis
of partial differential equations (see for instance the books of Verfürth [53], Ainworth and
Oden [1] and Repin [46] for a general introduction). Concerning a posteriori error estimates
for variational inequalities discretized as in (1) or (2), let us mention the pioneering work
of Brezzi et al. [13], next Ainsworth et al. [2], Kornhuber [39], Repin [47] and Bürg and
Schröder [15]. For the elliptic obstacle problem we can more precisely mention the contri-
butions of Veeser [52], Chen and Nochetto [16], and Braess [9]. Not to solve (3) exactly or
with a high precision leads to the concept of an inexact semismooth Newton method. Such
approaches are heavily used in practice and theoretical foundations can be found in [14,22,38]
for the case of inexact Newtonmethods and in [25–28,37,43] for inexact semismooth Newton
methods. All these approaches, however, do not take into account the discretization error of
the PDE by the given numerical scheme, only addressing the convergence of Xk,i

h to Xh in

the above example, whereas we rather steer our algorithm by the estimated distance of Xk,i
h to

the PDE solution X . The general concepts we use to derive (5) follow Becker et al. [3], Louf
et al. [42], Jiránek et al. [35], Ern and Vohralík [23], and Papež et al. [44,45]. In particular,
to achieve a guaranteed bound of the form (5), we use the equilibrated flux reconstructions
with auxiliary local problems by Destuynder and Mëtivet [21] and Braess and Schöberl [11].
A reconstruction of the primal variable satisfying the constraints on the given step k ≥ 1,
i ≥ 1, will also be performed.

Let � ⊂ R
2 be a polygon. We exemplify the above approach with the following problem

that models the contact between two membranes: find u1, u2, and λ such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−μ1�u1 − λ = f1 in �,

−μ2�u2 + λ = f2 in �,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in �,

u1 = g on ∂�,

u2 = 0 on ∂�,

(6)

where u1 and u2 represent vertical displacements of the two membranes and λ is a Lagrange
multiplier characterizing the action of the second membrane on the first one. The constant
parameters μ1, μ2 > 0 correspond to the tension of the membranes, and f1, f2 ∈ L2(�)

123

0003054
Typewritten Text
Author's Personal Copy



28 Page 4 of 32 Journal of Scientific Computing (2020) 84 :28

are given external forces. The boundary condition prescribed by a constant g > 0 ensures
that the first membrane is above the second one on the boundary ∂�. In (6), the two first
equations represent the kinematic behavior of themembranes, and the third one represents the
linear complementarity conditions saying that either the membranes are separated (u1 > u2,
λ = 0), or they are in contact (u1 = u2, λ ≥ 0). A combined path-following semismooth
Newton strategy for problem (6) at the continuous level was recently proposed and analyzed
in Zhang et al. [55]. A finite element discretization together with an a priori convergence
analysis was performed in [4,5], and an a posteriori analysis was undertaken in [6]. Therein,
however, it was supposed that the discrete system (1) is solved exactly, for continuous and
piecewise affine finite elements. The additional difficulty we have to treat here is that our
approximate solutions do not fulfill the constraints (because of the inexact solve (4) for any
polynomial degree p ≥ 1, and in general for p ≥ 2).

This contribution is organized as follows. In Sect. 2, the model problem (6) is discretized
by finite elements of any polynomial degree p ≥ 1, yielding an algebraic system of the form
(1). In Sect. 3, we present the concept of the inexact semismooth Newton method giving rise
to systems (2)–(4). The various flux reconstructions are described in Sect. 4. Next, Sect. 5
is dedicated to the construction of the a posteriori error estimate of the form (5). In Sect. 6,
we present the adaptive inexact semismooth algorithm and in Sect. 7, we prove the converse
inequality to (5) (up to a generic constant) for the leading terms, assessing the quality of our
estimates. Finally, Sect. 8 is devoted to numerical experiments for p = 1 and p = 2.

2 Model Problem and Its Finite Element Discretization

In this section, we set up the notation, describe in details themodel problem (6), and introduce
its finite element discretization for all polynomial degrees p ≥ 1. For the sake of brevity, the
results in Sects. 2.3–2.5 are given without proofs which can be found in [18, Sect.1.2].

2.1 Function Spaces and Basic Notation

Let H1(�) be the space of L2 functions on the domain � which admit a weak gradient
in [L2(�)]2 and H1

0 (�) its zero-trace subspace. Similarly, H(div,�) stands for the space
of [L2(�)]2 functions having a weak divergence in L2(�). Moreover, we define the set
H1
g (�) := {

v ∈ H1(�), v = g on ∂�
}
. The standard notations ∇ and ∇· are used respec-

tively for the weak gradient and divergence operators. For a nonempty setO ofR
2, we denote

its Lebesguemeasure by |O| and the L2(O) scalar product by (u, v)O := ∫

O uv dx for u, v ∈
L2(O). We also use the following notations: ‖v‖2O := (v, v)O and ‖∇v‖2O := (∇v,∇v)O ;
when O = �, the index is dropped. Besides, the Poincaré–Friedrichs and the Poincaré–
Wirtinger inequalities state that if vO denotes the mean value of v on O and hO the diameter
of O , then

‖v‖O ≤ CPFhO ‖∇v‖O ∀v ∈ H1
0 (O), (7a)

‖v − vO ‖O ≤ CPWhO ‖∇v‖O ∀v ∈ H1(O). (7b)
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The constants CPF and CPW can be precisely estimated in many cases. In particular, CPF is
at most 1 and if O is convex, then CPW can be taken as 1

π
. We define the energy norm

|||v|||O :=
{

2∑

α=1

μα ‖∇vα‖2O
} 1

2

, v = (v1, v2) ∈ [H1
0 (O)]2. (8)

When O = �, we use the shorthand notation |||v||| := |||v|||O . We also define the following
rescaling of the H−1(O) norm:

∀v ∈ H−1(O), |||v|||H−1∗ (O )
:= sup

ψ∈H1
0 (O ), max(μ

1
2
1 ,μ

1
2
2 )‖∇ψ‖O =1

〈v,ψ〉 . (9)

2.2 Full and Reduced Problems

Set u := (u1, u2), v := (v1, v2) and define the forms

a(u, v) :=
2∑

α=1

μα (∇uα,∇vα) , b(v, χ) := (χ, v1 − v2) , l(v) :=
2∑

α=1

( fα, vα) ; (10)

note that a is coercive on [H1
0 (�)]2. Let us also define the convex set

� := {
χ ∈ L2(�), χ ≥ 0 a.e. in �

}
.

Supposing ( f1, f2) ∈ [L2(�)]2 and g a positive constant, the weak formulation of (6)
consists in finding u ∈ H1

g (�) × H1
0 (�) and λ ∈ � such that

a(u, v) − b(v, λ) = l(v) ∀v ∈ [H1
0 (�)]2, (11a)

b (u, χ − λ) ≥ 0 ∀χ ∈ �. (11b)

Following [5, Proposition 1], (11) admits a unique weak solution. Define also the convex set
Kg by

Kg :=
{
(v1, v2) ∈ H1

g (�) × H1
0 (�), v1 − v2 ≥ 0 a.e. in �

}
. (12)

Then a reduced variational problem, equivalent to (11) (cf. [5, Lemma 2]) is to find u =
(u1, u2) ∈ Kg such that

a(u, v − u) ≥ l(v − u) ∀v = (v1, v2) ∈ Kg. (13)

(13) is classically well-posed, cf. Lions and Stampacchia [41] or Hlaváček et al. [30].

2.3 Discretization of the Reduced Problem by Finite Elements

LetTh be a conforming simplicialmesh of�, i.e.Th is a set of triangles verifying∪K∈Th K =
�, where the intersection of the closure of two elements ofTh is either an empty set, a vertex,
or an edge. The set of vertices ofTh is denoted byVh and is partitioned into the interior vertices
V i
h and the boundary vertices V e

h . The vertices of an element K ∈ Th are collected in the set
VK . Denote by hK the diameter of a triangle K and h := maxK∈Th hK . Furthermore, for a
vertex a ∈ Vh , let the patch ωa

h ⊂ � be the domain made up of the elements of Th that share
a. The vector nωa

h
stands for its outward unit normal.
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In the sequel, we use the discrete conforming space of piecewise polynomial functions

X p
h := {

vh ∈ C 0(�); vh |K ∈ Pp(K ) ∀K ∈ Th
} ⊂ H1(�),

where Pp(K ) stands for the set of polynomials of total degree less than or equal to p on the
element K ∈ Th . We consider any p ≥ 1. We also denote by V p the set of the Lagrange
nodes xl and by N p its cardinality. The interior nodes are collected in the set V p,i (with
N p,i its cardinality) and the boundary ones are collected in the set V p,e. The Lagrange basis
functions of X p

h are then denoted by
(
ψh,xl

)

1≤l≤N p , xl ∈ V p; ψh,xl takes value one in xl
and zero in all other Lagrange nodes. In the particular case p = 1, the set V 1 coincides with
the mesh vertices Vh , and the Lagrange basis functions are the “hat” basis functions denoted
by ψh,a, a ∈ Vh .

We also introduce the boundary-aware set and space

X p
gh := {

vh ∈ X p
h , vh = g on ∂�

} ⊂ H1
g (�), X p

0h := X p
h ∩ H1

0 (�),

as well as the convex set where the constrains are only imposed in the Lagrange nodes

K
p
gh :=

{
vh = (v1h, v2h) ∈ X p

gh × X p
0h, v1h(xl) − v2h(xl) ≥ 0 ∀xl ∈ V p,i

}
. (14)

Recall (12) and observe that K 1
gh ⊂ Kg holds but K p

gh �⊂ Kg when p ≥ 2. The discrete

counterpart to (13) then consists in finding uh = (u1h, u2h) ∈ K
p
gh such that

a(uh, vh − uh) ≥ l(vh − uh) ∀vh = (v1h, v2h) ∈ K
p
gh . (15)

As a result of the Lions–Stampacchia theorem, problem (15) admits a unique solution.
Following the methodology of [5, equation (4.5)] or [15], let for all (wh, vh) ∈ X p

h × X p
h

〈wh, vh〉h :=

⎧
⎪⎨

⎪⎩

∑

a∈Vh

wh(a)vh(a)
|ωa

h |
3

if p = 1, (16a)

(wh, vh) if p ≥ 2. (16b)

Then we define a discrete convex set

�
p
h := {

vh ∈ X p
h ; 〈

vh, ψh,xl
〉

h ≥ 0 ∀xl ∈ V p,i,
〈
vh, ψh,xl

〉

h = 0 ∀xl ∈ V p,e} . (17)

Observe that �p
h �⊂ � for p ≥ 2, whereas in the case p = 1, �p

h reduces to

�1
h = {

vh ∈ X1
0h; vh(a) ≥ 0 ∀a ∈ V i

h

} = {
vh ∈ X1

0h; vh ≥ 0
} ⊂ �, (18)

same as in [4, Section 4]. The sets K p
gh and �

p
h are chosen to satisfy the following property

that will give rise to a discrete weak formulation for the constraints:

〈χh, v1h − v2h〉h =
N p,i
∑

l=1

(v1h − v2h)(xl)
〈
χh, ψh,xl

〉

h ≥ 0 ∀χh ∈ �
p
h , ∀(v1h, v2h) ∈ K

p
gh .

Finally, let λ1h and λ2h in X p
h be given by

〈
λ1h, ψh,xl

〉

h = μ1
(∇u1h,∇ψh,xl

) − (
f1, ψh,xl

) ∀xl ∈ V p,i,

〈λ1h, ψh,xl 〉h = 0 ∀xl ∈ V p,e,〈
λ2h, ψh,xl

〉

h = −μ2
(∇u2h,∇ψh,xl

) + (
f2, ψh,xl

) ∀xl ∈ V p,i,

〈λ2h, ψh,xl 〉h = 0 ∀xl ∈ V p,e.

(19)
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Note that (16a) corresponds to the use of a mass lumping, so that (19) for p = 1 is a local
postprocess, whereas for p ≥ 2, the mass matrices in (19) are not diagonal. Extending [4,
Proposition 12] to the case p ≥ 2, we can easily obtain:

Lemma 2.1 Let (u1h, u2h) ∈ K
p
gh be the solution of the reduced discrete problem (15). Then

the functions λ1h and λ2h defined by (19) coincide, we can set λh := λ1h = λ2h, and there
holds λh ∈ �

p
h .

2.4 Equivalence with the Discretization of the Full Problem by Finite Elements

Relying on the (discrete when p = 1) L2 scalar product of (16), one can also consider a
discretization of (11) as: find uh = (u1h, u2h) ∈ X p

gh × X p
0h and λh ∈ �

p
h such that

a(uh, vh) − 〈λh, v1h − v2h〉h = l(vh) ∀vh = (v1h, v2h) ∈ [X p
0h]2, (20a)

〈χh − λh, u1h − u2h〉h ≥ 0 ∀χh ∈ �
p
h . (20b)

In extension of [5, Lemma 13] to p ≥ 2, it can be seen that the equivalence from the
continuous level carries over to the discrete one, see [18, Lemma 1.2.4] for the proof:

Lemma 2.2 For any solution (u1h, u2h, λh) of problem (20), the pair (u1h, u2h) is a solution
of problem (15). Conversely, for any solution (u1h, u2h) of problem (15), defining the function
λh = λαh, α = 1, 2 by (19), the triple (u1h, u2h, λh) is a solution of problem (20).

Remark 2.3 Consider χh = 0 and χh = 2λh ∈ �
p
h in (20b). Combining this with the

definitions (17) of �
p
h and (14) of K p

gh gives the discrete complementarity constraints

(u1h − u2h) (xl) ≥ 0,
〈
λh, ψh,xl

〉

h ≥ 0 ∀xl ∈ V p,i,
〈
λh, ψh,xl

〉

h = 0 ∀xl ∈ V p,e,

〈λh, u1h − u2h〉h = 0.
(21)

Note that when piecewise affine finite elements are employed (p = 1), (21) reduces to

(u1h − u2h) (a) ≥ 0, λh(a) ≥ 0, λh(a) (u1h − u2h) (a) = 0 ∀a ∈ V i
h , (22)

so that in particular
u1h ≥ u2h, λh ≥ 0 if p = 1, (23)

and the approximation is conforming in that uh ∈ Kg and λh ∈ �; more precisely, the two
first equations of the constraints in (6) hold strongly (everywhere) for (u1h, u2h, λh) when
p = 1, whereas the third one is only satisfied discretely in the interior vertices. For p ≥ 2,
the approximation is generally nonconforming with uh /∈ Kg , λh /∈ �, and with L2 integral
product being zero only in place of the third constraint in (6).

2.5 Algebraic Formulation as a Complementarity Problem

In order to express the discrete problem (20) under an algebraic form, consider the basis
(
h,xl )1≤l≤N p of X p

h , dual to (ψh,xl )1≤l≤N p in that
〈

h,xl , ψh,xl

〉

h = 1 ∀xl ∈ V p,
〈

h,xl , ψh,xm

〉

h = 0 ∀xl , xm ∈ V p, xm �= xl .
(24)
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Note that for p = 1, the dual basis is just the Lagrange basis ψh,a, a ∈ Vh , with the scaling
3/|ωa

h |, whereas for p ≥ 2, each 
h,xl can be determined by inverting the finite element
mass matrix as in (19). An important property is that 
h,xl belong to �

p
h for all xl ∈ V p,i.

Noting that X p
gh is decomposed as X p

gh = X p
0h + g (recall that g > 0 is constant), and

using (21), (24) for λh ∈ �
p
h , the three unknowns live in the internal nodes, i.e.

u1h =
N p,i
∑

l=1

(X1h)lψh,xl + g, u2h =
N p,i
∑

l=1

(X2h)lψh,xl , λh =
N p,i
∑

l=1

(X3h)l
h,xl . (25)

Consequently, (20a) gives rise to a system of linear equations EXh = F, where
XT
h := (X1h, X2h, X3h)

T ∈ R
3N p,i

and the rectangular matrix E ∈ R
2N p,i,3N p,i

is defined
by

E :=
[

μ1S 0 −Id

0 μ2S Id

]

,

with S ∈ R
N p,i,N p,i

the finite element stiffness matrix, Sl,m := (∇ψh,xm ,∇ψh,xl ), 1 ≤
l,m ≤ N p,i, and Id ∈ R

N p,i,N p,i
the identity matrix. The right-hand side F is defined by

blocks FT := (F1, F2)
T with (Fα)l := ( fα, ψh,xl ), 1 ≤ l ≤ N p,i, α = 1, 2. Problem (20),

taking into account (21) and relying on (24), can then be written under the compact form:
find Xh ∈ R

3N p,i
such that

EXh = F,

X1h + g1 − X2h ≥ 0, X3h ≥ 0, (X1h + g1 − X2h) · X3h = 0,
(26)

where 1 = [1, . . . , 1]T ∈ R
N p,i

. Consequently, denoting K (Xh) := X1h + g1 − X2h and
G(Xh) := X3h , which are respectively affine and linear, (26) fits the abstract class of prob-
lems (1) of the introduction.

2.6 C-functions

We now express the complementarity constraints in (26), which take a form of inequalities,
as non-differentiable equalities. Let us recall that a function f : (Rm)2 → R

m , m ≥ 1, is a
C-function or a complementarity function if

∀(x, y) ∈ (
R
m)2 f (x, y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x· y = 0.

Examples ofC-functions are respectively the min function, the Fischer–Burmeister function,
or the Mangasarian function

(min{x, y})l := min
{
xl , yl

}
l = 1, . . . ,m, (27a)

( fFB(x, y))l :=
√

x2l + y2l − (
xl + yl

)
l = 1, . . . ,m, (27b)

( fM(x, y))l := ξ(|xl − yl |) − ξ( yl) − ξ(xl) l = 1, . . . ,m, (27c)

where ξ : R �→ R is an increasing function satisfying ξ(0) = 0. For more details on C-
functions see [26,27]. Let C̃ be anyC-function, i.e., satisfying, form = N p,i, C̃(X1h +g1−
X2h, X3h) = 0 ⇐⇒ X1h + g1 − X2h ≥ 0, X3h ≥ 0, and (X1h + g1 − X2h) ·X3h = 0.
Then, introducing the function C : R

3N p,i → R
N p,i

defined as C(Xh) := C̃(X1h + g1 −
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X2h, X3h), problem (26) can be equivalently rewritten as: find Xh ∈ R
3N p,i

such that
{

EXh = F,

C(Xh) = 0.
(28)

3 Inexact Semismooth NewtonMethods

Wenowconsider an approximation of the discrete system (26), rewritten using anyC-function
as a system of nonlinear algebraic equations (28), by a semismooth Newton method.

3.1 A Semismooth Newton Linearization

Given an initial vector X0
h ∈ R

3N p,i
, on step k ≥ 1, one looks for Xk

h ∈ R
3N p,i

such that

A
k−1Xk

h = Bk−1, (29)

where the Jacobian matrix A
k−1 ∈ R

3N p,i,3N p,i
and the right-hand-side vector Bk−1 ∈

R
3N p,i

are respectively defined by

A
k−1 :=

[
E

JC(Xk−1
h )

]

, Bk−1 :=
[

F
JC(Xk−1

h )Xk−1
h − C(Xk−1

h )

]

. (30)

Note that since the first line of (28) is linear, the corresponding Jacobian is constant and equal
to E. The semismooth nonlinearity occurs in the second line of (28), so that JC(Xk−1

h ) is the
Clarke subdifferential of the semismooth C-function C at Xk−1

h , see [8,26,27].

3.2 Example of a Semismooth NewtonMethod: TheMin Case

For the semismooth function min (27a), we in particular obtain

min {X1h + g1 − X2h, X3h} = min

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

u1h(x1) − u2h(x1)
...

u1h(xN p,i) − u2h(xN p,i)

⎞

⎟
⎠ ,

⎛

⎜
⎝

(X3h)1
...

(X3h)N p,i

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

If the blockmatricesK andG inR
N p,i,3N p,i

are definedbyK := [Id,−Id, 0],G := [0, 0, Id],
then the l th row of the Jacobian matrix JC(Xk−1

h ) is either given by the l th row of K if

uk−1
1h (xl)−uk−1

2h (xl) ≤
(
Xk−1
3h

)

l
, or by the l th row of G if uk−1

1h (xl)−uk−1
2h (xl) >

(
Xk−1
3h

)

l
.

3.3 Inexact Solution of the Linear Algebraic Systems

As a crucial point in our study, we focus on the case where the system of linear algebraic
equations (29) is solved inexactly. Suppose thus that some iterative algebraic solver is applied
to the linear system (29). Given an initial vector Xk,0

h ∈ R
3N p,i

, often taken as Xk,0
h = Xk−1

h ,

this yields on step i ≥ 1 an approximation Xk,i
h to Xk

h satisfying

A
k−1Xk,i

h = Bk−1 − Rk,i
h , (31)
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where Rk,i
h := Bk−1−A

k−1Xk,i
h ∈ R

3N p,i
is the algebraic residual vector. Note that Rk,i

h has

a block structure of the form (Rk,i
h )T := (Rk,i

1h , Rk,i
2h , Rk,i

3h )T , with Rk,i
1h ∈ N p,i corresponds

to the test functions v1h in (20a) (with v2h = 0), Rk,i
2h corresponds to the test functions v2h

in (20a) (with v1h = 0), and Rk,i
3h issues from the complementarity constraints (21). The

approximations (uk,i1h , uk,i2h , λ
k,i
h ) are then obtained from Xk,i

h as in (25).

4 Flux Reconstructions

We introduce here flux reconstructions that will be central in our a posteriori analysis. We
follow some general concepts in [11,21,23] and the references therein. Let k ≥ 1 be a
semismooth linearization step and i ≥ 1 be a linear solver step. Denote by �Pp the L2-
orthogonal projection onto the space Pp(Th) of discontinuous piecewise polynomials of
order p ≥ 1. We in particular construct here σ

k,i
αh ∈ H(div,�), α ∈ {1, 2}, such that

∇·σ k,i
αh = �Pp ( fα) − (−1)αλ

k,i
h ∈ Pp(Th), (32)

i.e.,
(∇·σ k,i

αh + (−1)αλ
k,i
h , qh

)

K = ( fα, qh)K ∀qh ∈ Pp(K ), ∀K ∈ Th .

The construction of these fluxes is based on the first two diffusion equations in (6) that are
linear. Consequently,we do not need to construct any linearization fluxes as in [23]. The fluxes
σ
k,i
αh are an approximation in H(div,�) to the opposite of the gradient of uk,iαh multiplied by

μα . We will further separate them into two contributions: one lifting the algebraic residuals
Rk,i
1h and Rk,i

2h of Sect. 3.3 and the other dealing with the discretization error.

4.1 Algebraic Residual Representation

Following [44,45], we first associate with Rk,i
1h and Rk,i

2h of Sect. 3.3 discontinuous piecewise

polynomials rk,i1h and rk,i2h of degree p ≥ 1 that vanish on the boundary of �. These can
be easily computed solving on each element K ∈ Th a small problem with mass matrix as
follows. For xl ∈ V p,i, denote by Nh,xl the number of mesh elements forming the support
of the basis function ψh,xl . Then, ∀K ∈ Th , ∀α ∈ {1, 2}, define rk,iαh |K ∈ Pp(K ) by

(rk,iαh , ψh,xl )K = (Rk,i
αh )l

Nh,xl
, rk,iαh |∂K∩∂� := 0

for all basis functions ψh,xl , xl ∈ V p,i nonzero on K . It is easily seen that the first 2N p,i

lines of (31) then read, cf. (20a) and (19),

μ1

(
∇uk,i1h ,∇ψh,xl

)
=
(
f1 + λ̃

k,i
h,l − rk,i1h , ψh,xl

)
∀l = 1, . . . ,N p,i,

μ2

(
∇uk,i2h ,∇ψh,xl

)
=
(
f2 − λ̃

k,i
h,l − rk,i2h , ψh,xl

)
∀l = 1, . . . ,N p,i,

(33)

where

λ̃
k,i
h,l :=

{
λ
k,i
h (xl) (real number given by the vertex value of λ

k,i
h ) if p = 1,

λ
k,i
h (function λ

k,i
h , the index l being discarded) if p ≥ 2.

(34)

123

0003054
Typewritten Text
Author's Personal Copy



Journal of Scientific Computing (2020) 84 :28 Page 11 of 32 28

In the sequel, we also use the shorthand notation, for a vertex a ∈ Vh ,

λ̃
k,i
h,a :=

{
λ
k,i
h (a) if p = 1,

λ
k,i
h if p ≥ 2.

(35)

4.2 Discretization Flux Reconstruction

We now provide a way to obtain the discretization flux reconstructions (σ
k,i
1h,disc, σ

k,i
2h,disc).

This is done via solution of local mixed systems on the patches ωa
h around the mesh vertices

a ∈ Vh of the mesh Th and crucially employs the P1 hat basis functions ψh,a that form a
partition of unity by

∑
a∈Vh

ψh,a = 1. The Raviart–Thomas spaces of order p ≥ 1 [12] are
defined by

RTp(�) := {
τ h ∈ H(div,�), τ h |K ∈ RTp(K ) ∀K ∈ Th

}
,

where RTp(K ) := [
Pp(K )

]2 + xPp(K ), with x = [x1, x2]T . For a vertex a ∈ Vh , let

RTp(ω
a
h ) := {

τ h ∈ H(div, ωa
h ), τ h |K ∈ RTp(K ), ∀K ∈ Th such that K ⊂ ωa

h

}
,

and let Pp(Th |ωa
h
) stand for piecewise discontinuous polynomials of order p ≥ 1 in the

patch ωa
h . Define consequently the spaces Va

h and Qa
h , when a ∈ V i

h , by

Va
h :=

{
τ h ∈ RTp(ω

a
h ), τ h ·nωa

h
= 0 on ∂ωa

h

}
, Qa

h :=
{
qh ∈ Pp(Th |ωa

h
), (qh, 1)ωa

h
= 0

}

and, when a ∈ V e
h , by

Va
h :=

{
τ h ∈ RTp(ω

a
h ), τ h ·nωa

h
= 0 on ∂ωa

h\∂�
}

, Qa
h :=Pp(Th |ωa

h
).

Definition 4.1 Let
(
uk,i1h , uk,i2h , λ

k,i
h

)
be the approximate solution given by (31), verifying in

particular (33). For each vertex a ∈ Vh , define σ
k,i,a
αh,disc ∈ Va

h and γ
k,i,a
αh ∈ Qa

h , by solving:
(
σ
k,i,a
αh,disc, τ h

)

ωa
h

−
(
γ
k,i,a
αh ,∇·τ h

)

ωa
h

= −
(
μαψh,a∇uk,iαh , τ h

)

ωa
h

∀τ h ∈ Va
h ,

(
∇·σ k,i,a

αh,disc, qh
)

ωa
h

=
(
g̃k,i,aαh , qh

)

ωa
h

∀qh ∈ Qa
h,

(36)

where the right-hand sides are defined by

g̃k,i,aαh :=
(
fα − (−1)αλ̃

k,i
h,a − rk,iαh

)
ψh,a − μα∇uk,iαh ·∇ψh,a ∀a ∈ Vh, (37)

recalling the notation (34)–(35). Then set

σ
k,i
1h,disc :=

∑

a∈Vh

σ
k,i,a
1h,disc and σ

k,i
2h,disc :=

∑

a∈Vh

σ
k,i,a
2h,disc. (38)

Consider an interior vertex a ∈ V i
h and take the P1 hat basis function ψh,a in (33).

This shows that (g̃k,i,a1h , 1)ωa
h

= 0, i.e., the Neumann compatibility condition is satisfied for
problems (36). Consequently, the second line of (36) holds true for all qh ∈ Pp(Th |ωa

h
) (and

not only on Qa
h). Since the functions ψh,a form a partition of unity as

∑
a∈Vh

ψh,a = 1 and

since rk,iαh |K and λ
k,i
h |K belong to Pp(K ) for all K ∈ Th , we immediately have from [24,

Lemma 3.5] that, for α ∈ {1, 2},
σ
k,i
αh,disc ∈ RTp(�) ⊂ H(div,�) with ∇·σ k,i

αh,disc = �Pp ( fα) − (−1)αλ
k,i
h − rk,iαh . (39)
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Note that we use in particular
∑

a∈VK
(λ

k,i
h ψh,a)|K = λ

k,i
h |K for p ≥ 2 by the partition of

unity by
∑

a∈Vh
ψh,a|K = 1|K , whereas ∑a∈Vh

λ̃
k,i
h,aψh,a = ∑

a∈Vh
λ
k,i
h (a)ψh,a = λ

k,i
h by

the definition of the Lagrange basis for p = 1.

4.3 Algebraic Error Flux Reconstruction via a Multilevel Approach

Given the piecewise polynomials rk,iαh ∈ Pp(Th) from Sect. 4.1, we can immediately use the
approach of [44, Concept 4.1] to obtain

σ
k,i
αh,alg ∈ RTp(�) ⊂ H(div,�) with ∇·σ k,i

αh,alg = rk,iαh , ∀α ∈ {1, 2}. (40)

This construction requires a hierarchy of nested meshes of � and corresponds to one step of
V-cycle multigrid. Setting σ

k,i
αh := σ

k,i
αh,alg + σ

k,i
αh,disc, (39) with (40) yields (32).

5 A Posteriori Error Estimates

We derive in this section an a posteriori estimate on the error between the exact solution
u and the approximate solution uk,ih valid at each linearization iteration k ≥ 1 and each
algebraic iteration i ≥ 1 of any inexact semismooth Newton method of Sect. 3. The main
difficulty lies in the treatment of the constraints: the conditions uk,i1h − uk,i2h ≥ 0 and λ

k,i
h ≥ 0

do not necessarily hold before the convergence of both solvers for p = 1, and not even at
convergence for p ≥ 2. To treat the possible case λ

k,i
h < 0, let

λ
k,i
h = λ

k,i,pos
h + λ

k,i,neg
h , λ

k,i,pos
h := max{λk,ih , 0}, λ

k,i,neg
h := min{λk,ih , 0}

be its positive and negative parts. Note that λk,i,posh ∈ � but in general λk,i,posh , λ
k,i,neg
h /∈ X p

h

(i.e, λk,i,posh , and λ
k,i,neg
h are not piecewise polynomials on the mesh Th).

5.1 A Guaranteed a Posteriori Error Estimate for the Displacements

For local elementwise estimators η
k,i
·,K , K ∈ Th , let their global counterparts be

ηk,i· := {∑
K∈Th

(η
k,i
·,K )2

} 1
2 . Let C�,μ := h�CPF

( 1
μ1

+ 1
μ2

) 1
2 . The first main result of this

article is:

Theorem 5.1 (Guaranteed a posteriori estimate for the displacements) Let u = (u1, u2) ∈
Kg be the solution of the continuous reduced problem (13). Let uk,ih = (

uk,i1h , uk,i2h

) ∈ X p
gh ×

X p
0h and λ

k,i
h ∈ X p

h be the approximation given by (31) for any polynomial degree p ≥ 1,

any linearization step k ≥ 1, and any algebraic solver step i ≥ 1. Let σ
k,i
1h and σ

k,i
2h be the

equilibrated flux reconstructions of Sect. 4. Let finally s̃k,ih ∈ Kg be arbitrary. For α ∈ {1, 2},
define the estimators

η
k,i
F,K ,α :=

∥
∥
∥
∥μ

1
2
α ∇uk,iαh + μ

− 1
2

α σ
k,i
αh

∥
∥
∥
∥
K

, ηosc,K ,α := hK
π

μ
− 1

2
α

∥
∥ fα − �Pp ( fα)

∥
∥
K

,

η
k,i,pos
C,K := 2

(
λ
k,i,pos
h , uk,i1h − uk,i2h

)

K
, η

k,i
1 :=

⎛

⎝
∑

K∈Th

2∑

α=1

(
η
k,i
F,K ,α + ηosc,K ,α

)2

⎞

⎠

1
2

,
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η
k,i
nonc,1,K :=

∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
K

, η
k,i
nonc,2,K :=C�,μ

∥
∥
∥λ

k,i,neg
h

∥
∥
∥
K

,

η
k,i
nonc,3,K := 2C�,μ

∥
∥
∥λ

k,i,pos
h

∥
∥
∥

∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
K

.

Then, the following a posteriori error estimate holds:

∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ ηk,i :=

⎧
⎨

⎩

(
η
k,i
1 + η

k,i
nonc,1 + η

k,i
nonc,2

)2 + η
k,i
nonc,3 +

∑

K∈Th

η
k,i,pos
C,K

⎫
⎬

⎭

1
2

. (41)

Remark 5.2 The estimators of Theorem 5.1 reflect various violations of physical properties of
the approximate solution (uk,ih , λ

k,i
h ): ηk,iF,K ,α and ηosc,K ,α represent the nonconformity of the

flux, i.e., the fact that −μα∇uk,iαh /∈ H(div,�); ηk,i,posC,K reflects inconsistencies in the contact

conditions at the discrete level, i.e., the fact that (uk,i1h − uk,i2h )λ
k,i
h �= 0 everywhere in �;

η
k,i
nonc,1,K , η

k,i
nonc,2,K , and η

k,i
nonc,3,K stem from the possible departure of the discrete solution

uk,ih from the convex set Kg and the possible negativity of the discrete Lagrange multiplier

λ
k,i
h .

Remark 5.3 In [6], an a posteriori estimate between the exact solution u and the finite element
approximation uh given by (15) for p = 1, not taking into account nonlinear and linear
solvers, was derived. Estimate (41) is its consistent extension to the present setting.

Proof of Theorem 5.1 First, as uk,ih does not belong to Kg in general, we define the a-

orthogonal projection s ∈ Kg of u
k,i
h to the nonempty closed convex set Kg by

a(s, v − s) ≥ a(uk,ih , v − s) ∀v ∈ Kg, (42)

where we recall that the bilinear symmetric form a was defined in (10). Problem (42) is well-
posed thanks to the Lions–Stampacchia theorem [41], because a defines a scalar product on
[H1

0 (�)]2. Developing the square, the projection s satisfies for each v ∈ Kg

∣
∣
∣

∣
∣
∣

∣
∣
∣v − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
2 = |||v − s|||2 + 2a(v − s, s − uk,ih ) +

∣
∣
∣

∣
∣
∣

∣
∣
∣s − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
2
. (43)

Since a(v − s, s − uk,ih ) ≥ 0 from (42), taking successively in (43) v = u and v = s̃k,ih for

any s̃k,ih ∈ Kg , we obtain

|||u − s||| ≤
∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ , (44)

∣
∣
∣

∣
∣
∣

∣
∣
∣s − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ = η

k,i
nonc,1. (45)

Second, the energy norm of the error is decomposed as
∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
2 = a(u − uk,ih , u − uk,ih ) = a(u − uk,ih , u − s) + a(u − uk,ih , s − uk,ih ). (46)

We estimate both terms in (46) separately. The second one is bounded by theCauchy–Schwarz
inequality and (45),

a(u − uk,ih , s − uk,ih ) ≤
∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣s − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ η

k,i
nonc,1. (47)

The rest of the proof is dedicated to bounding the first one.
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The reduced problem (13) for v = s ∈ Kg yields

a(u, u − s) ≤ l(u − s). (48)

Setting w = u − s, we estimate the first term in (46) using (48) and adding and substracting
b(w, λ

k,i
h ) and employing the definitions of b and l of (10)

a(u − uk,ih ,w) ≤ l(w) + b(w, λ
k,i
h ) − a(uk,ih ,w) − b(w, λ

k,i
h ),

=
2∑

α=1

(
fα − (−1)αλ

k,i
h , wα

)
−

2∑

α=1

(
μα∇uk,iαh ,∇wα

)
− b(w, λ

k,i
h ). (49)

Besides, as σ
k,i
αh ∈ H(div,�) and since wα ∈ H1

0 (�), the Green formula gives

(
∇·σ k,i

αh , wα

)
= −

(
σ
k,i
αh ,∇wα

)
∀α ∈ {1, 2} . (50)

Then, using (50) in (49), one has

a(u − uk,ih ,w) ≤
2∑

α=1

∑

K∈Th

{(
fα − (−1)αλ

k,i
h − ∇·σ k,i

αh , wα

)

K

−
(

μ
1
2
α ∇uk,iαh + μ

− 1
2

α σ
k,i
αh , μ

1
2
α ∇wα

)

K

}

− b(w, λ
k,i
h ).

(51)

It remains to bound each of the three terms in (51).
Using the divergence property (32), the Cauchy–Schwarz and Poincaré–Wirtinger (7b)

inequalities, sincewα ∈ H1(K ), and denoting bywα,K the mean ofwα over K , for α = 1, 2,
(
fα − (−1)αλ

k,i
h − ∇·σ k,i

αh , wα

)

K
= (

fα − �Pp ( fα), wα − wα,K
)

K
,

≤ ηosc,K ,α

∥
∥
∥
∥μ

1
2
α ∇wα

∥
∥
∥
∥
K

.
(52)

Furthermore, by the Cauchy–Schwarz inequality

−
(

μ
1
2
α ∇uk,iαh + μ

− 1
2

α σ
k,i
αh , μ

1
2
α ∇wα

)

K
≤ η

k,i
F,K ,α

∥
∥
∥
∥μ

1
2
α ∇wα

∥
∥
∥
∥
K

. (53)

Next, as u ∈ Kg , w = u − s, and −b(u, λ
k,i,pos
h ) ≤ 0, we have

−b(w, λ
k,i
h ) ≤ −b(w, λ

k,i,neg
h ) + b(s − uk,ih , λ

k,i,pos
h ) + b(uk,ih , λ

k,i,pos
h )

= −
(
λ
k,i,neg
h , w1 − w2

)
+
(
λ
k,i,pos
h , (s1 − uk,i1h ) − (s2 − uk,i2h )

)

+ 1

2

∑

K∈Th

2
(
λ
k,i,pos
h , uk,i1h − uk,i2h

)

K
.

Using (8), we see

‖∇ (w1 − w2)‖ ≤
2∑

α=1

μ
− 1

2
α

∥
∥
∥
∥μ

1
2
α ∇wα

∥
∥
∥
∥ ≤

(
1

μ1
+ 1

μ2

) 1
2 |||w||| .
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Thus, the Cauchy–Schwarz and Poincaré–Friedrichs (7a) inequalities, noting that both wα

and (sα − uk,iαh ) belong to H1
0 (�), and also employing (45), we obain

− b(w, λ
k,i
h ) ≤ η

k,i
nonc,2 |||w||| + 1

2
η
k,i
nonc,3 + 1

2

∑

K∈Th

η
k,i,pos
C,K . (54)

Therefore, combining (46), (47), (51), (52), (53), (54), and (44), we get
∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
2 ≤

(
η
k,i
nonc,1 + η

k,i
1 + η

k,i
nonc,2

) ∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ + 1

2
η
k,i
nonc,3 + 1

2

∑

K∈Th

η
k,i,pos
C,K .

To conclude, the inequality AB ≤ 1
2 (A

2 + B2) gives the result (41). ��

5.2 Construction of s̃k,ih

As for the choice of s̃k,ih ∈ Kg in Theorem 5.1, a possibility is to proceed as follows. In
addition to K

p
gh of (14), for a polynomial degree p′ ≥ p, introduce the convex set

K̃
p′
gh :=

{
(v1h, v2h) ∈ X p′

gh × X p′
0h, v1h − v2h ≥ 0

}
⊂ Kg; (55)

note that for p′ = 1, K̃
1
gh = K 1

gh but K̃
p
gh�K

p
gh for p ≥ 2. From uk,ih = (

uk,i1h , uk,i2h

) ∈
X p
gh × X p

0h �⊂ K
p
gh , we then first construct sk,ih ∈ K

p
gh such that, ∀xl ∈ V p,i,

sk,ih (xl) :=

⎧
⎪⎨

⎪⎩

uk,ih (xl) =
(
uk,i1h (xl), u

k,i
2h (xl)

)
if uk,i1h (xl) ≥ uk,i2h (xl),

(
1

2

(
uk,i1h (xl) + uk,i2h (xl)

)
,
1

2

(
uk,i1h (xl) + uk,i2h (xl)

))

if uk,i1h (xl) < uk,i2h (xl).

(56)
When p = 1, we can take s̃k,ih := sk,ih , leading to the requested s̃k,ih ∈ K 1

gh = K̃
1
gh ⊂ Kg .

When p ≥ 2, it may happen that even if the first components of sk,ih are greater or equal

to the second components of sk,ih in the Lagrange nodes, sk,i1h � sk,i2h everywhere, so that

sk,ih /∈ K̃
p
gh . We then employ the following procedure:

1. Go through all edges e of the mesh Th lying in the interior of the domain �, e ∈ E i
h .

(a) Consider se := (
sk,i1h − sk,i2h

)|e. This is a p-degree polynomial on the one-dimensional
segment e. If se ≥ 0, set ce := 0. Otherwise se takes negative values inside e but is
non-negative at the two vertices of e by virtue of (56).

(b) Consider the edge bubble function ψe: this a non-negative piecewise second-order
polynomial defined over ωe, the subdomain formed by the two triangles that share
the edge e, continuous over e, zero on ∂ωe, and with ‖ψe‖∞,ωe = 1.

(c) Let ce be the smallest positive constant such that (se + ceψe|e) ≥ 0 on the edge e.

2. Go through all elements K of the mesh Th .

(a) Consider sK := (
sk,i1h − sk,i2h

)|K + (∑
e∈E i

h
ceψe

)|K . This is a p-degree polynomial on
the two-dimensional triangle K . If sK ≥ 0, set cK := 0. Otherwise sK takes negative
values inside K but is non-negative at the three edges of K .

(b) Consider the element bubble functionψK : this a non-negative third-order polynomial
defined over K , zero on ∂K , and with ‖ψK ‖∞,K = 1.
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(c) Let cK be the smallest positive constant such that sK + cKψK ≥ 0 on K .

3. Define s̃k,ih by

s̃k,i1h := sk,i1h + 1

2

∑

e∈E i
h

ceψe + 1

2

∑

K∈Th

cKψK ,

s̃k,i2h := sk,i2h − 1

2

∑

e∈E i
h

ceψe − 1

2

∑

K∈Th

cKψK .

(57)

We easily see from the above that s̃k,i1h ≥ s̃k,i2h , so that s̃k,ih ∈ K̃
max{p,3}
gh ⊂ Kg .

5.3 A Guaranteed a Posteriori Error Estimate for the Actions

Concerning λ
k,i
h , the following estimate holds (recall the definition given in (9)):

Theorem 5.4 (Guaranteed a posteriori estimate for the actions) Assume the hypotheses and
notations of Theorem 5.1 and let λ ∈ � be the solution of problem (11). Then

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ

k,i
h

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (�)

≤ ηk,i + η
k,i
1 . (58)

Proof The proof follows the one in [6, Corollary 3.5]. We only give the essential elements.
Let μm := max(μ1, μ2). Employing (9) and extending appropriately b,

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ

k,i
h

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (�)

= sup
ψ∈H1

0 (�)

μm‖∇ψ‖2=1

〈λk,ih − λ,ψ〉 = sup
φ∈[H1

0 (�)]2
μm

∑2
α=1‖∇φα‖2=1

b(φ, λ
k,i
h − λ).

Fix φ ∈ [H1
0 (�)]2 such that μm

∑2
α=1 ‖∇φα‖2 = 1. Invoking (11), we have

−b(φ, λ − λ
k,i
h ) = l(φ) + b(φ, λ

k,i
h ) − a(uk,ih ,φ) − a(u − uk,ih ,φ).

The last term is estimated as −a(u− uk,ih ,φ) ≤
∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣, since |||φ||| ≤ 1. The first three

terms are identical to the first three terms of (49) but with φ ∈ [H1
0 (�)]2 instead of w. Thus,

using the estimates (52) and (53), one gets

−b(φ, λ − λ
k,i
h ) ≤ η

k,i
1 +

∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ ,

which combined with (41) gives the result. ��
Remark 5.5 At convergence, for P1 finite elements, estimate (58) reduces to (3.30) in [6]
with a slightly sharper treatment of the oscillation in fα .

5.4 Distinguishing the Different Error Components

We now distinguish the different error components in the estimators from Theorem 5.1, by
identifying the discretization estimator ηk,idisc, the semismooth linearization estimator ηk,ilin , and

the linear algebra estimator η
k,i
alg, such that η

k,i
alg → 0 when i → ∞, ηk,ilin → 0 and η

k,i
alg → 0

when k → ∞ and i → ∞, and all η
k,i
disc, η

k,i
lin , η

k,i
alg → 0 when h → 0, k → ∞, i → ∞,

supposing that uh → u ∈ Kg and λh → λ ∈ �, which was proven for p = 1 in [5].
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When p = 1, the nonconformity estimators η
k,i
nonc,β , 1 ≤ β ≤ 3, can be interpreted as

estimators stemming from the semismooth linearization since they all tend to zero when
k → ∞ and i → ∞; indeed, at convergence, s̃k,ih = sk,ih = uh from (56) and (22), whereas

λ
k,i,neg
h = λ

neg
h = 0 from (23). The estimates η

k,i,pos
C,K are attributed to discretization, as they

only vanish when h → 0.
When p ≥ 2, the triangle inequality gives

∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − sk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣

︸ ︷︷ ︸
discretization

+
∣
∣
∣

∣
∣
∣

∣
∣
∣sk,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣

︸ ︷︷ ︸
linearization

; (59)

here, from constructions (56)–(57), the first term vanishes for h → 0, k → ∞, i → ∞,
whereas the other one for k → ∞ and i → ∞. Thanks to (21) and (16b), we can decompose

(
λ
k,i,pos
h , uk,i1h − uk,i2h

)
=
(
λ
k,i,pos
h − λ

k,i
h , uk,i1h − uk,i2h

)

︸ ︷︷ ︸
discretization

+
(
λ
k,i
h , uk,i1h − uk,i2h

)

︸ ︷︷ ︸
linearization

. (60)

Finally, using (25), we decompose λ
k,i
h = λ̃

k,i,pos
h + λ̃

k,i,neg
h with

λ̃
k,i,pos
h :=

N p,i
∑

l=1

max
{(
Xk,i
3h

)

l , 0
}

h,xl , λ̃

k,i,neg
h :=

N p,i
∑

l=1

min
{(
Xk,i
3h

)

l , 0
}

h,xl ,

so that λ̃k,i,posh and −λ̃
k,i,neg
h ∈ �

p
h ⊂ X p

h (recall that λk,i,posh , λ
k,i,neg
h /∈ X p

h in general), and
use ∥

∥
∥λ

k,i,neg
h

∥
∥
∥ ≤

∥
∥
∥λ

k,i,neg
h − λ̃

k,i,neg
h

∥
∥
∥

︸ ︷︷ ︸
discretization

+
∥
∥
∥λ̃

k,i,neg
h

∥
∥
∥

︸ ︷︷ ︸
linearization

. (61)

Note that λ̃k,i,negh → 0 when k → ∞, i → ∞, and λ
k,i,neg
h vanishes when h → 0.

Corollary 5.6 (A posteriori estimate distinguishing the different error components) Assume
the hypotheses and notations of Theorem 5.1.

Define, for α ∈ {1, 2},

η
k,i
disc,K ,α :=

∥
∥
∥
∥μ

1
2
α ∇uk,iαh + μ

− 1
2

α σ
k,i
αh,disc

∥
∥
∥
∥
K

, η
k,i
alg,K ,α :=

∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥
K

, (62a)

η
k,i
alg :=

⎧
⎨

⎩

2∑

α=1

∑

K∈Th

(η
k,i
alg,K ,α)2

⎫
⎬

⎭

1
2

, (62b)

and if p = 1

η
k,i
disc :=

⎧
⎨

⎩

2∑

α=1

∑

K∈Th

(
η
k,i
disc,K ,α + ηosc,K ,α

)2

⎫
⎬

⎭

1
2

+
⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∑

K∈Th

η
k,i,pos
C,K

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

1
2

, (62c)

η
k,i
lin := η

k,i
nonc,1 + η

k,i
nonc,2 +

(
η
k,i
nonc,3

) 1
2
, (62d)
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whereas if p ≥ 2

η
k,i
disc :=

⎧
⎨

⎩

2∑

α=1

∑

K∈Th

(
η
k,i
disc,K ,α

+ ηosc,K ,α

)2

⎫
⎬

⎭

1
2

+
{
2
∣
∣
∣

(
λ
k,i,pos
h − λ

k,i
h , uk,i1h − uk,i2h

)∣
∣
∣

} 1
2

+
∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − sk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ + C�,μ

∥
∥
∥λ

k,i,neg
h − λ̃

k,i,neg
h

∥
∥
∥ +

(
2C�,μ

∥
∥
∥λ

k,i,pos
h

∥
∥
∥

) 1
2
∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − sk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣

1
2

,

(62e)

η
k,i
lin :=

∣
∣
∣

∣
∣
∣

∣
∣
∣sk,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ + C�,μ

∥
∥
∥λ̃

k,i,neg
h

∥
∥
∥ +

(
2C�,μ

∥
∥
∥λ

k,i,pos
h

∥
∥
∥

) 1
2
∣
∣
∣

∣
∣
∣

∣
∣
∣sk,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣

1
2

+
{
2
∣
∣
∣

(
λ
k,i
h , uk,i1h − uk,i2h

)∣
∣
∣

} 1
2

. (62f)

Then, ∣
∣
∣

∣
∣
∣

∣
∣
∣u − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ η

k,i
disc + η

k,i
lin + η

k,i
alg.

Proof As for (A, B) ∈ R+ × R+, (A + B)
1
2 ≤ A

1
2 + B

1
2 , we have from (41)

ηk,i ≤ η
k,i
1 + η

k,i
nonc,1 + η

k,i
nonc,2 +

(
η
k,i
nonc,3

) 1
2 +

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

K∈Th

η
k,i,pos
C,K

∣
∣
∣
∣
∣
∣

⎞

⎠

1
2

.

Next, the definition of η
k,i
1 combined with the triangle (Minkowski) inequality to separate

the algebraic η
k,i
alg,K ,α and the discretization η

k,i
disc,K ,α estimators gives

η
k,i
1 ≤

⎛

⎝
∑

K∈Th

2∑

α=1

(
η
k,i
disc,K ,α + ηosc,K ,α

)2

⎞

⎠

1
2

+
⎛

⎝
∑

K∈Th

2∑

α=1

(
η
k,i
alg,K ,α

)2

⎞

⎠

1
2

,

which finishes the proof for p = 1. For p ≥ 2, we need to additionally invoke
(59)–(61). ��

6 Adaptive Inexact Semismooth NewtonMethod Using a Posteriori
Stopping Criteria

We propose in this section an adaptive inexact semismooth Newton method. In the spirit
of [23], it is designed to only perform the linearization and algebraic resolution with minimal
necessary precision and thus to avoid unnecessary iterations. We rely on Corollary 5.6 that
estimates the size of the different error components and design adaptive stopping criteria for
both linearization and algebraic solvers.

6.1 A Posteriori Stopping Criteria

Recall that we employ a semismooth Newton method for nonlinear problem (28), yielding
on each step k ≥ 1 linear system (29) that we solve inexactly in the sense of (31). Let γlin
and γalg be two positive parameters typically of order 0.1, representing the desired relative
sizes of the algebraic and linearization errors. We propose the following a posteriori stopping
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criteria, balancing the algebraic, linearization, and discretization estimators of Corollary 5.6:

(a) η
k,i
alg ≤ γalg max

{
η
k,i
disc, η

k,i
lin

}
, (b) η

k,i
lin ≤ γlinη

k,i
disc. (63)

Remark 6.1 When p = 1, for all mesh elements K ∈ Th , let γlin,K , γalg,K be two fixed
parameters, typically of order 0.1, representing the desired local relative sizes of the lin-
earization and algebraic errors components. Following [23,35], one can aim at the balance of
all error components in each mesh cell in place of (63), while simultaneously guaranteeing
the global criteria (63). These local criteria read

η
k,i
alg,ωa

h ,
≤ min

K⊂ωa
h

{
γalg,K max

{
η
k,i
disc,K ,α, η

k,i
lin,K

}}
∀α ∈ {1, 2} , (64a)

η
k,i
lin,K ≤ min

α∈{1,2}

{
γlin,Kη

k,i
disc,K ,α

}
, (64b)

where

η
k,i
lin,K :=

(

1 +
(
2C�,μ

∥
∥
∥λ

k,i,pos
h

∥
∥
∥

) 1
2
∣
∣
∣

∣
∣
∣

∣
∣
∣s̃k,ih − uk,ih

∣
∣
∣

∣
∣
∣

∣
∣
∣
− 1

2
)

η
k,i
nonc,1,K + η

k,i
nonc,2,K , (65a)

η
k,i
alg,ωa

h ,
:=

⎧
⎨

⎩

∑

K⊂ωa
h

(
η
k,i
alg,K ,α

)2

⎫
⎬

⎭

1
2

=
∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

. (65b)

The (complicated) form of ηk,ilin,K ensures that local criteria (64) imply the global criteria (63),

and stems from the different scalings of η
k,i
nonc,1,K and η

k,i
nonc,2,K with respect to η

k,i
nonc,3,K in

Theorem 5.1. In particular, local efficiency for p = 1 will be proven below based on (64).

Remark 6.2 When p ≥ 2, for the sake of brevity, we only consider locally the algebraic error
component and require the local stopping criterion

η
k,i
alg,ωa

h ,
≤ min

K⊂ωa
h

{
γalg,Kη

k,i
disc,K ,α

}
∀α ∈ {1, 2} (66)

in place of (64), where η
k,i
alg,ωa

h ,
is given by (65b).

6.2 Adaptive Inexact Semismooth Newton Algorithm

The adaptive version of the inexact semismooth Newton algorithm of Sect. 3.3 that we
propose is as follows:
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Algorithm 1 Adaptive inexact semismooth Newton algorithm

0. Choose an initial vector X0
h ∈ R

3N p,i
and set k = 1.

1. From Xk−1
h define A

k−1 ∈ R
3N p,i,3N p,i

and Bk−1 ∈ R
3N p,i

by (30).
2. Consider the linear system

A
k−1Xk

h = Bk−1. (67)

3. Set Xk,0
h := Xk−1

h as initial guess for the iterative linear solver, set i := 0.

4a. Perform ν ≥ 1 steps of a chosen linear solver for (67), starting from Xk,i
h . This yields on step i + ν an

approximation Xk,i+ν
h to Xk

h satisfying

A
k−1Xk,i+ν

h = Bk−1 − Rk,i+ν
h .

Set i = i + ν

4b. Compute the estimators of Corollary 5.6 and check the stopping criterion for the linear solver in the

form (63)(a). Set i := i + ν. If satisfied, set Xk
h := Xk,i

h . If not go back to 4a.

5. Check the stopping criterion for the nonlinear solver in the form (63)(b). If satisfied, return Xh := Xk
h .

If not, set k := k + 1 and go back to 1.

7 Efficiency

We prove in this section local efficiency of our a posteriori error estimators, proceeding
following [10,23,24,44]. In the case p = 1, we rely on the local stopping criteria (64); in
the generic case p ≥ 2, we do not address the local efficiency in the presence of an inexact
linearization solver and rely on (66). We assume in the sequel for simplicity that f1 and f2
are piecewise Pp polynomials. This obviously yields ηosc,K ,α = 0, ∀α ∈ {1, 2}. We do not

treat here the “complementarity” estimators η
k,i,pos
C,K that are typically numerically very small.

Their local efficiency could be proven, when p = 1, along the lines of [6, Proposition 3.9].

7.1 Continuous-Level Problems with Hat Functions on Patches

For each vertex a ∈ Vh , define the spaces

H1∗ (ωa
h ) :=

{
v ∈ H1(ωa

h ); (v, 1)ωa
h

= 0
}

a ∈ V i
h ,

H1∗ (ωa
h ) := {

v ∈ H1(ωa
h ); v = 0 on ∂ωa

h ∩ ∂�
}

a ∈ V e
h .

Then there is a constant Ccont,PF > 0 only depending on the shape regularity of Th such that
∥
∥∇ (

ψh,av
)∥
∥

ωa
h

≤ Ccont,PF ‖∇v‖ωa
h

∀v ∈ H1∗ (ωa
h ), (68)

see Braess et al. [10] or Ern and Vohralík [24]. Then, we have:

Lemma 7.1 Let (u1, u2, λ) be the solution of (11) and let (uk,i1h , uk,i2h , λ
k,i
h ) be the approx-

imation given by (31), verifying in particular (33). Let a ∈ Vh, and for α ∈ {1, 2}, let
ζα,a ∈ H1∗ (ωa

h ) be the solution of

(
μα∇ζα,a,∇v

)

ωa
h

=
(
−μαψh,a∇uk,iαh ,∇v

)

ωa
h

+
(
g̃k,i,aαh , v

)

ωa
h

∀v ∈ H1∗ (ωa
h ), (69)
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where g̃k,i,aαh is defined in (37). Let μm := max(μ1, μ2). Then, for α ∈ {1, 2},
∥
∥
∥
∥μ

1
2
α ∇ζα,a

∥
∥
∥
∥

ωa
h

≤ Ccont,PF

(∥
∥
∥
∥μ

1
2
α ∇

(
uα − uk,iαh

)∥∥
∥
∥

ωa
h

+μ
1
2
mμ

− 1
2

α

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ̃

k,i
h,a

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (ωa

h )
+

∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

)

.

(70)

Proof Let α ∈ {1, 2}. There holds
∥
∥
∥
∥μ

1
2
α ∇ζα,a

∥
∥
∥
∥

ωa
h

= sup

v∈H1∗ (ωa
h ),

∥
∥
∥
∥
∥
μ

1
2
α ∇v

∥
∥
∥
∥
∥

ωa
h

=1

(

μ
1
2
α ∇ζα,a, μ

1
2
α ∇v

)

ωa
h

. (71)

Consider v ∈ H1∗ (ωa
h ) with

∥
∥
∥
∥μ

1
2
α ∇v

∥
∥
∥
∥

ωa
h

= 1. As ζα,a is the solution of (69), using in (11) the

definition (37) and considering the test functions
(
ψh,av, 0

)
and

(
0, ψh,av

)
, that crucially

belong to
(
H1
0 (ωa

h )
)2 ⊂ (

H1
0 (�)

)2
due to the multiplication by the hat functions ψh,a,

(

μ
1
2
α ∇ζα,a, μ

1
2
α ∇v

)

ωa
h

=
(

μ
1
2
α ∇

(
uα − uk,iαh

)
, μ

1
2
α ∇ (

ψh,av
)
)

ωa
h

+
(
(−1)α

(
λ − λ̃

k,i
h,a

)
− rk,iαh , ψh,av

)

ωa
h

.

(72)

Moreover, as ψh,av ∈ H1
0 (ωa

h ), σ
k,i
αh,alg ∈ H(div, ωa

h ), and ∇·σ k,i
αh,alg = rk,iαh by (40), the

Green formula and the Cauchy–Schwarz inequality give

∣
∣
∣
∣

(
rk,iαh , ψh,av

)

ωa
h

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
−
(

μ
− 1

2
α σ

k,i
αh,alg, μ

1
2
α ∇ (

ψh,av
)
)

ωa
h

∣
∣
∣
∣
∣

≤
∥
∥
∥
∥μ

1
2
α ∇ (

ψh,av
)
∥
∥
∥
∥

ωa
h

∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

.

(73)

Multiplying and dividing
(
λ − λ̃

k,i
h,a, ψh,av

)

ωa
h

by

∥
∥
∥
∥μ

1
2
m∇ (

ψh,av
)
∥
∥
∥
∥

ωa
h

and using that

ψh,av ∈ H1
0 (ωa

h ), which allows us to employ definition (9), we get

∣
∣
∣
∣

(
λ − λ̃

k,i
h,a, ψh,av

)

ωa
h

∣
∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ̃

k,i
h,a

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (ωa

h )
μ

1
2
mμ

− 1
2

α

∥
∥
∥
∥μ

1
2
α ∇ (

ψh,av
)
∥
∥
∥
∥

ωa
h

. (74)

Finally, the Cauchy–Schwarz inequality leads to

(

μ
1
2
α ∇

(
uα − uk,iαh

)
, μ

1
2
α ∇ (

ψh,av
)
)

ωa
h

≤
∥
∥
∥
∥μ

1
2
α ∇

(
uα − uk,iαh

)∥∥
∥
∥

ωa
h

∥
∥
∥
∥μ

1
2
α ∇ (

ψh,av
)
∥
∥
∥
∥

ωa
h

.

(75)
The result now follows by combining (73), (74), and (75) with (68) together with (71). ��
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7.2 Local Efficiency of the Estimators

Recall the definition of ζα,a from (69) inLemma7.1. Following [10,24], there exists a constant
Cst > 0 only depending on the shape regularity of the mesh Th such that the discretization
flux reconstructions σ

k,i,a
αh,disc of Definition 4.1 satisfy

∥
∥
∥
∥μ

1
2
α ψh,a∇uk,iαh + μ

− 1
2

α σ
k,i,a
αh,disc

∥
∥
∥
∥

ωa
h

≤ Cst

∥
∥
∥
∥μ

1
2
α ∇ζα,a

∥
∥
∥
∥

ωa
h

. (76)

Our second main result is:

Theorem 7.2 (Efficiency of the a posteriori estimate) Let the flux reconstructions σ
k,i
αh,disc be

given by Definition 4.1 and let σ
k,i
αh,alg satisfy (40). Let the local stopping criteria (64) be

satisfied for the estimators of Corollary 5.6 for p = 1 and (66) for p ≥ 2. Let finally the
algebraic parameters γalg,K be such that

γalg,K ≤ 1

6CstCcont,PF max
{
1, γlin,K

} if p = 1,

γalg,K ≤ 1

6CstCcont,PF
if p ≥ 2.

(77)

Setting
δK := 2CstCcont,PF

(
1 + γlin,K + γalg,K max

{
1, γlin,K

})
if p = 1

and
δK := 2CstCcont,PF

(
1 + γalg,K

)
if p ≥ 2,

we have for α ∈ {1, 2}
η
k,i
disc,K ,α + η

k,i
lin,K + η

k,i
alg,K ,α

≤ δK
∑

a∈VK

(∥
∥
∥
∥μ

1
2
α ∇

(
uα − uk,iαh

)∥∥
∥
∥

ωa
h

+ μ
1
2
mμ

− 1
2

α

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ̃

k,i
h,a

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (ωa

h )

)

if p = 1,

η
k,i
F,K ,α ≤η

k,i
disc,K ,α + η

k,i
alg,K ,α

≤ δK
∑

a∈VK

(∥
∥
∥
∥μ

1
2
α ∇

(
uα − uk,iαh

)∥∥
∥
∥

ωa
h

+ μ
1
2
mμ

− 1
2

α

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ̃

k,i
h,a

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (ωa

h )

)

if p ≥ 2.

Proof We first treat the case p = 1. Let α ∈ {1, 2}. First, the local criteria (64a) and (64b)
and the definition of δK yield

η
k,i
disc,K ,α + η

k,i
lin,K + η

k,i
alg,K ,α ≤ δK

2CstCcont,PF
η
k,i
disc,K ,α. (78)

Next, definition (62a) and (38) which implies σ
k,i
αh,disc|K = ∑

a∈VK
σ
k,i,a
αh,disc|K together with

the partition of unity
∑

a∈VK
ψh,a|K = 1|K imply

η
k,i
disc,K ,α ≤

∑

a∈VK

∥
∥
∥
∥μ

1
2
α ψh,a∇uk,iαh + μ

− 1
2

α σ
k,i,a
αh,disc

∥
∥
∥
∥

ωa
h

,
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where we have also enlarged the domain of the integral. Thus, stability (76) and energy lower
bound (70) lead to

η
k,i
disc,K ,α ≤ CstCcont,PF

∑

a∈VK

(∥
∥
∥
∥μ

1
2
α ∇

(
uα − uk,iαh

)∥∥
∥
∥

ωa
h

+μ
1
2
mμ

− 1
2

α

∣
∣
∣

∣
∣
∣

∣
∣
∣λ − λ̃

k,i
h,a

∣
∣
∣

∣
∣
∣

∣
∣
∣
H−1∗ (ωa

h )
+
∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

)

.

(79)

Using successively the local criteria (64), and since any triangle has three vertices,

∑

a∈VK

∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

=
∑

a∈VK

η
k,i
alg,ωa

h ,
≤ 3γalg,K max

{
η
k,i
disc,K ,α, η

k,i
lin,K

}

≤ 3γalg,K max
{
1, γlin,K

}
η
k,i
disc,K ,α.

(80)

Employing now crucially assumption (77), it follows that

CstCcont,PF

∑

a∈VK

∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

≤ η
k,i
disc,K ,α

2
. (81)

Finally, we combine (81) with (79) to bound η
k,i
disc,K ,α without the term containing σ

k,i
αh,alg,

and we conclude using (78).
If p ≥ 2 the analogue of equation (78) reads

η
k,i
disc,K ,α + η

k,i
alg,K ,α ≤ δK

2CstCcont,PF
η
k,i
disc,K ,α.

While, inequalities (79) and (81) remain the same, inequality (80) reads

∑

a∈VK

∥
∥
∥
∥μ

− 1
2

α σ
k,i
αh,alg

∥
∥
∥
∥

ωa
h

≤ 3γalg,Kη
k,i
disc,K ,α. (82)

The conclusion follows immediately. ��

8 Numerical Experiments

This section illustrates numerically our theoretical developments in the case of continuous
and piecewise affine and piecewise quadratic finite elements, p = 1, 2. We consider the unit
disk � := {(r , θ) ∈ [0, 1] × [0, 2π ]} using the polar coordinates, and an analytical solution
given in [6] by, for all (r , θ) ∈ �,

u1(r , θ) := g(2r2 − 1),

u2(r , θ) :=

⎧
⎪⎨

⎪⎩

g(2r2 − 1) if r ≤ 1/
√
2,

g(1 − r)(2r2 − 1)

√
2√

2 − 1
if r ≥ 1/

√
2,

λ(r , θ) :=
{
2g if r ≤ 1/

√
2,

0 if r ≥ 1/
√
2.

This triple is the solution of the system (6) for the data f1 and f2 given by

f1(r , θ) :=
{

−10g if r ≤ 1/
√
2,

−8g if r ≥ 1/
√
2,

f2(r , θ) :=

⎧
⎪⎨

⎪⎩

−6g if r ≤ 1/
√
2,

−g
1 + 8r − 18r2

r

√
2√

2 − 1
if r ≥ 1/

√
2.
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Fig. 1 Solution at convergence for approximately 8000 mesh elements, (p = 1). Left: position of the mem-
branes (u1h , u2h ). Right: discrete action (λh )

The parameters μ1 and μ2 are set to 1 and the boundary condition for the first membrane g
is equal to 0.05.

We use the semismooth Newton linearization of Sect. 3.1 with the min function (27a)
exemplified in Sect. 3.2, combined with the GMRES linear solver for the system (29) in the
sense of Sect. 3.3. Figure 1 displays the behavior of the solution when the Newton-min and
the GMRES solvers have converged. We observe a contact zone in the area r � 1/

√
2, where

λh is positive. For the computation of σ
k,i
αh,alg, α = 1, 2, following Sect. 4.3, we consider

a hierarchy with three uniformly refined meshes. To approximate the integrals containing
λ
k,i,pos
h or λ

k,i,neg
h , we use a Gauss quadrature formula with 7 (p = 1), respectively 16

(p = 2) points per element. Following (28) and (31), we define the linearization and algebraic
residuals by

Rk,i
lin :=

(
F − EXk,i

h
−C(Xk,i

h )

)

and Rk,i
alg := Rk,i

h . (83)

Three different methods are tested:
(1) The exact Newton-min method, where both the linear and nonlinear solvers are iterated
to “almost” convergence: we set εalg := 2·10−12 and εlin := 10−10, and use the criteria on the
relative residuals

(a)
∥
∥
∥Rk,i

alg

∥
∥
∥ /

∥
∥
∥Bk−1

∥
∥
∥ ≤ εalg, (b)

∥
∥
∥Rk,i

lin

∥
∥
∥ /

∥
∥
∥
∥

(
F
0

)∥
∥
∥
∥ ≤ εlin. (84)

Thus Xk,i
h ≈ Xh , where Xh is the solution of (28).

(2) The inexact Newton-min method, where αalg := 1, εlin := 10−10, and

(a)
∥
∥
∥Rk,i

alg

∥
∥
∥ /

∥
∥
∥Bk−1

∥
∥
∥ ≤ αalg

∥
∥
∥Rk,i

lin

∥
∥
∥ /

∥
∥
∥
∥

(
F
0

)∥
∥
∥
∥ , (b)

∥
∥
∥Rk,i

lin

∥
∥
∥ /

∥
∥
∥
∥

(
F
0

)∥
∥
∥
∥ ≤ εlin. (85)

(3) Our adaptive inexact Newton-minmethod of Algorithm 1, using the stopping criteria (63)
with γalg := 0.3 and γlin := 0.3.

In the cases of inexact and adaptive inexact methods, the criteria are computed every
ν := 10 linear solver iterations. An ILU preconditioner is used to speed up the GMRES
solver. The initial linearization guess is taken as (X0

h)
T := [g1, 0, 0]T ∈ R

3N p,i
. In the

sequel, when the stopping criterion of the nonlinear solver is satisfied, the index k will be
denoted by k, and similarly for the index i with i . The results are presented for a mesh
containing approximately 8000 triangles, except when looking at mesh dependency.
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Fig. 2 Left: uk,i1h − uk,i2h at the second Newton-min step (p = 1, k = 2, i = 20). Center: λ
k,i
h at the third

Newton-min step (p = 1, k = 3, i = 20). Right: λnegh := min{λh , 0} at convergence (p = 2, k = k, i = i); in
figures,P2 functions are plotted asP1 functions on a refined mesh (each triangle divided into four triangles)

Fig. 3 p = 1: a posteriori estimators ηk,i , ηk,idisc, η
k,i
lin , η

k,i
alg at convergence as a function of the number of mesh

elements. Exact (left), inexact (middle), and adaptive inexact (right) Newton-min methods with respectively
the stopping criteria (84), (85), and (63). The log scales are different in each graph

Figure 2 shows the possible violation of the physical constraints, see Remark 5.2. For
piecewise affine finite elements, during the iterations before convergence, uk,i1h < uk,i2h and

λ
k,i
h < 0 can occur, see the left and center figures. Even at convergence, u1h < u2h and

λh < 0 can occur with piecewise quadratic elements, see the right figure for λh , where small
undershoots take place.

8.1 Numerical Results for Piecewise Affine Elements (p = 1)

We first investigate the case p = 1. Figure 3 displays the curves of the different estimators
as a function of the number of mesh elements when the nonlinear and algebraic stopping
criteria (84), (85), or (63) are satisfied. In this example, the total estimators ηk,i (41) are almost
identical for the three methods (exact, inexact, and adaptive inexact). Moreover, one observes

that ηk,i ≈ η
k,i
disc, and the error components from Newton-min and GMRES are relatively

small. Next, ηk,ialg takes values below 10−11 for the exact semismooth Newton and below 10−8

for the inexact semismooth Newton, whereas η
k,i
lin takes similar values in both cases (below

10−6). The adaptive inexact Newton method proposed here shows a different behavior: both

η
k,i
alg and η

k,i
lin take larger values that are just sufficiently small not to influence the overall

error estimator. It is also interesting to note the following: although the relative linearization

residual ‖Rk,i
lin ‖/∥∥( F

0

)∥
∥ is requested to lie below εlin = 10−10 in (84)(b) and (85)(b), our

linearization estimator η
k,i
lin given by (62d) still remains quite large (≈ 10−6, see Fig. 3, left

and middle). Clearly, the linearization residual and our linearization estimator expressing its
lifting back to the physical space can have significantly different orders of magnitude.
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Fig. 4 p = 1: estimators as a function of the algebraic iterations for k = 1. Exact (left), inexact (middle), and
adaptive inexact (right) Newton-min methods

Fig. 5 p = 1: estimators as a function of the Newton-min iterates k (i = i). Exact (left), inexact (middle),
and adaptive inexact (right) Newton-min methods

Figure 4 shows the evolution of the various estimators and of the (non-relative) residuals
‖Rk,i

lin ‖ and ‖Rk,i
alg‖ during the algebraic iterations of the first Newton-min step (k = 1, i

varies). In the exact case, we observe that 220 GMRES iterations are needed to achieve the
criterion (84)(a). In both the inexact and adaptive inexact cases, only 10 GMRES iterations
are required to satisfy respectively (85)(a) and (63)(a), the estimators are computed only
once (recall ν = 10), and the total and linearization estimators are approximately equal.

Figure 5 represents the evolution of the various estimators as a function of the semis-
mooth Newton iterations when the algebraic solver stopping criteria have been satisfied (k
varies, i = i). For the three methods, the linearization estimator dominates and is close to
the total estimator until approximately the 14th iteration. Next, one can observe that during
the Newton-min iterations, the linearization estimator steadily decreases, whereas the dis-
cretization one roughly stagnates. The linearization iterations are then stopped in the adaptive
inexact Newton-min case when the discretization error becomes dominant, whereas the inex-
act Newton-min performs many unnecessary additional iterations. This can also be the case
for the exact Newton-min algorithm in general, but here it converges very rapidly at the end.
Criteria (84)(b) (exact), (85)(b) (inexact), and (63)(b) (adaptive inexact) are met respectively
in 15, 46, and 14 iterations.

Figure 6 illustrates the overall performance of the three approaches. In the first graph, the
behavior of the three methods is represented when the number of mesh elements is increased.
The inexact Newton-min method requires many more semismooth iterations to converge in
comparison with the other methods. The exact and the adaptive inexact methods lead to
roughly the same number of nonlinear iterations. The second graph of Fig. 6 presents the
required number of algebraic steps to satisfy the linear stopping criterion for each method
at each Newton-min step for a given mesh. Many algebraic iterations are necessary in the
exact Newton-min case, while in the inexact and adaptive inexact cases, the algebraic solver
is generally stopped in 10 iterations. The total number of algebraic iterations is displayed
as a function of the number of elements in the right part of Fig. 6. We observe that exact
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Fig. 6 p = 1: number of Newton-min iterations per number of elements (left), number of algebraic solver
iterations per Newton-min step for 8000 elements (middle), and total number of linear solver iterations per
number of elements (right)

Fig. 7 p = 1: effectivity index as a function of the Newton-min steps for three methods (left), zoom for the
last five iterates (middle), and effectivity indices as a function of the number of mesh elements (right); k stands
for the last Newton-min step for each method (k = 15, 46, and 14 respectively for exact, inexact and adaptive
inexact methods)

Newton-min is the most expensive method (3000 iterations for 35000 elements), whereas
inexact and adaptive inexact require respectively 1660 and 670 iterations. Thus, globally our
approach yields an economy by a factor of roughly 2 with respect to inexact Newton-min
and roughly 5 with respect to exact Newton-min in terms of total algebraic solver iterations.

The effectivity indices, defined as the ratio of the total estimator ηk,i over the energy

norm
∣
∣
∥
∥u − uk,ih

∥
∥
∣
∣, are displayed in Fig. 7 as a function of the Newton-min iterations for the

three methods (k varies, i = i). We observe that they always decrease to the optimal value 1
when the computational effort grows. In the middle part of Fig. 7, we zoom on the last five
semismooth Newton iterations for all the methods. In the right part of Fig. 7, we displayed
the value of the effectivity indices for each method for several number of mesh elements
when the Newton-min solver and the GMRES solver have converged (k = k, i = i). Note
that the curves of inexact and adaptive inexact Newton-min are superimposed. We observe
that increasing the mesh size will not influence the behavior of the effectivity indices. It is
indeed still close to the optimal value of 1.

Figure 8 shows the local distribution of the total error estimator ηk,i and of the error in the

energy norm
∣
∣
∥
∥u − uk,ih

∥
∥
∣
∣ for the adaptive inexact Newton-min method (k = 3 , i = i). We

observe a very close agreement, even in the presence of algebraic and linearization errors.
Finally, Table 1 shows the dependency of our adaptive inexact method on the coefficients

γlin and γalg in the algebraic and linearization stopping criteria (63)(a) and (63)(b) (on the
finest mesh with 35000 elements). The first line gives the number of Newton-min iterations
required to satisfy (63)(b), and the second one the number of algebraic iterations required to
meet (63)(a), averaged over all Newton-min iterations. As the linearization convergence is
fast, the choice of γlin has a very small impact, but choosing γalg small adds many additional
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Fig. 8 Error in energy norm (left) and total estimator (right), adaptive inexact Newton-min method, p = 1,
8000 elements

Table 1 Number of iterations for the adaptive inexact Newton-min method for several parameters γalg and
γlin

(γalg, γlin) (0.3, 0.3) (0.03, 0.3) (0.3, 0.03) (0.03, 0.03)

Newton-min iterations 26 26 27 27

Average algebraic iterations 26 43 25 42

Total iterations 670 1130 680 1140

iterations. In any case, however, the overall number of algebraic iterations remains (much)
smaller than for the exact and inexact semismooth Newton methods.

8.2 Numerical Results for Piecewise Quadratic Elements (p = 2)

Figures 9, 10, and 11 are respectively the counterparts of Figs. 4, 5, and 6 for piecewise
quadratic elements (p = 2). In this context, there are 4 times more degrees of freedom than
in the case p = 1, and the discretization and linearization estimators are more intricate,
see (62e)–(62f). The comments made in Sect. 8.1 remain globally valid. This gives us a
good confidence in the identification of the various components of the error also for p = 2,
see Corollary 5.6.

Here, the costs of the exact and inexact Newton-min methods have importantly increased:
in both cases, when p = 2, the number of Newton-min iterations has more than doubled.
The total number of algebraic iterations has been multiplied by a factor of roughly 9 (21000
iterates instead of 2400 for p = 1 in the exact case for a mesh with 27,000 elements),
or roughly 4 (7300 iterations instead of 1700 in the inexact case). In contrast, the adaptive
inexactmethod remains cheap in terms ofNewton-min and algebraic iterations: only 540 total
algebraic iterates are required for the 27000 elementmesh, instead of 490. Thus, the speed-up
is here even more important, reading roughly 13.5 with respect to the inexact Newton-min
and roughly 39 with respect to the exact Newton-min. Figure 12 shows the effectivity indices
for the three methods. They tend to values close to the optimal value of 1. The final “bumps”
could not be explained, but they remain small.
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Fig. 9 p = 2: estimators as a function of the algebraic iterations for k = 1. Exact (left), inexact (middle), and
adaptive inexact (right) Newton-min methods

Fig. 10 p = 2: estimators as a function of the Newton-min iterates k (i = i). Exact (left), inexact (middle),
and adaptive inexact (right) Newton-min methods

Fig. 11 p = 2: number of Newton-min iterations per number of elements (left), number of algebraic solver
iterations per Newton-min step for 8000 elements (middle), and total number of linear solver iterations per
number of elements (right)

9 Conclusions

In thiswork, we have designed an adaptive inexact semismoothNewtonmethodwith adaptive
stopping criteria for the problem of contact between two membranes. We proved an optimal
a posteriori error estimate between the exact and approximate solution on each semismooth
Newton step k ≥ 1 and on each algebraic solver step i ≥ 1, for any polynomial degree p. This
estimate enables to distinguish the different error components. Our numerical experiments for
p = 1, 2 confirm that the adaptive inexact Newton-min method is much faster in comparison
with the exact and inexactNewton-min ones.Moreover, in contrast to these standardmethods,
the adaptive inexact method presented here provides an accurate estimation of the error
between the exact solution and its approximation. The extension of our developments to
parabolic variational inequalities is addressed in [19].
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Fig. 12 p = 2: effectivity index as a function of the Newton-min steps for three methods (left), zoom for
the last five iterates (right); k stands for the last Newton-min step for each method (k = 29, 116, and 22
respectively for exact, inexact and adaptive inexact methods)
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