
A hybrid parareal Monte Carlo algorithm for parabolic
problemsI

Jad Dabaghia,∗, Yvon Madayb, Andrea Zoiac

aCERMICS, École des Ponts ParisTech, France
bSorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions

(LJLL), F-75005 Paris, France & Institut Universitaire de France
cUniversité Paris-Saclay, CEA, Service d’études des réacteurs et de mathématiques

appliquées, 91191, Gif-sur-Yvette, France

Abstract

In this work, we propose a hybrid Monte Carlo/deterministic “parareal-in-
time” approach devoted to accelerating Monte Carlo simulations over massively
parallel computing environments for the simulation of time-dependent problems.

This parareal approach iterates on two different solvers: a low-cost “coarse”
solver based on a very cheap deterministic Galerkin scheme and a “fine” solver
based on a high-fidelity Monte Carlo resolution.

In a set of benchmark numerical experiments based on a toy model con-
cerning the time-dependent diffusion equation, we compare our hybrid parareal
strategy with a standard full Monte Carlo solution. In particular, we show that
for a large number of processors, our hybrid strategy significantly reduces the
computational time of the simulation while preserving its accuracy. The conver-
gence properties of the proposed Monte Carlo/deterministic parareal strategy
are also discussed.

Keywords: parareal-in-time algorithm, time-dependent problems,
predictor-corrector, Galerkin schemes, Monte Carlo method.
2010 MSC: 65N30, 65N75, 65F10, 65H10, 68W10

1. Introduction

Several physical phenomena are described by partial differential equations
(PDEs) whose analytical solution is often out of reach. In this context, numeri-

IThis project has received funding from the ANR project “Ciné-Para” (ANR-15-CE23-
0019). This work has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No 810367
- project EMC2) (YM) and from the European High Performance Computing Joint Under-
taking (EuroHPC JU) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No 955701 - project TIME-X) (YM).
∗Corresponding author
Email addresses: jad.dabaghi@enpc.fr (Jad Dabaghi),

yvon.maday@sorbonne-universite.fr (Yvon Maday), andrea.zoia@cea.fr (Andrea Zoia)

Preprint submitted to Journal of Computational and Applied Mathematics June 22, 2022

cal simulations appear to be in general the only viable approach to approximate
a solution. Among the wide range of numerical methods for solving PDEs,5

we mention for instance the finite element methods [1, 2, 3], the finite volume
methods [4, 5, 6], or the discontinuous Galerkin methods [7, 8, 9]. All these
approaches belong to the class of deterministic methods. For a certain class
of problems, e.g. in large dimension, probabilistic approaches based on Monte
Carlo methods have been advocated [10, 11, 12] and have become the approach10

of choice in several fields of application, like radiation transport [12] or molec-
ular dynamics [13]. For instance, in the simulation of neutron transport, a fine
deterministic discretization of the phase space variables would involve a tremen-
dous number of unknowns and correspondingly an unaffordable computational
cost and memory burden. Monte Carlo methods are weakly dependent on the15

dimensionality and are natively implemented over massively parallel computing
environments [14, 15].

The Monte Carlo approach consists in approximating the sought solution
u(x, t) by sampling a large number M � 1 of random walks whose estimated
density at point x and time t converges in the limit of large M to u(x, t). It is20

well known that the statistical uncertainty of the average quantities estimated
by the Monte Carlo method displays a 1/

√
M convergence as a result of the

Central Limit Theorem [10]. Obtaining a numerical solution sufficiently close
to the exact one requires therefore a very large number of random walks, wich
demands a high computational cost. These random walks (or histories) are25

independent, so that the Monte Carlo sampling can be performed in parallel.
In the context of nuclear reactor physics, where stochastic methods are used

to establish reference solutions to be compared to faster but approximated so-
lutions obtained by deterministic methods, until recently Monte Carlo methods
have been applied almost exclusively to the solution of stationary (i.e. time-30

independent) problems, mainly due to their high computational cost [10, 12].
However, the growth in available computer power stimulates the application of
Monte Carlo to the simulation of time-dependent neutron transport, in order
to take into account transient and/or accidental regimes for safety issues: the
main scientific challenge is to take into account the very different time scales of35

prompt and delayed neutrons in long transients (“kinetic” Monte Carlo for neu-
tron transport [16]). Similar efforts aimed at making non-stationary problems
increasingly accessible by Monte Carlo methods are carried out in many other
disciplines, such as molecular dynamics [17]. When addressing time-dependent
problems, the limiting factor affecting the total simulation time for a given40

amount of available processors is the fact that the time variable has a natural
flow and cannot be trivially parallelized. However, in recent years a few methods
have been introduced for this purpose: the key idea behind the time paralleliza-
tion is to decompose the time direction into “slices” where each interval can be
handled in parallel. In this respect, several strategies have been proposed in45

order to efficiently cope with the parallelisation in time [18, 19, 20, 21]. Among
these numerical methods, the parareal algorithm [21] relies on the idea of solv-
ing the time evolution of dynamical systems in a parallel fashion. It involves
two propagators F and G that approximately integrate a given system of partial

2

differential equations. The propagator F is a fine, accurate and thus expensive50

propagator, which approximates the exact solution u with high accuracy; on
the contrary, the propagator G is a coarse propagator, which is a less accurate
approximation of the exact solution u and much less expensive than F . These
solvers can, e.g., be based on different time steps (δt for F being typically much
smaller than ∆t for G), but the model that G approximates may also be a sim-55

plified version of the underlying set of partial differential equations describing
the model.

Let T0 = 0 < T1 < · · · < TN = T be a sequence of times. For the sake of
simplicity, we choose here Tn = n∆T for some appropriate time interval ∆T .
The parareal algorithm constructs a sequence uk := (un

k)1≤n≤N such that, for
each iteration k ≥ 0, un

k is an approximation of un := u(n∆T). For the iteration
k = 0, the initial approximation is obtained at each time step n using the coarse
propagator G over a propagation length of fixed size ∆T (we denote by G∆T

such a coarse evolution over a time window of size ∆T) :

∀n ≥ 0, un+1
k=0 := G∆T (unk=0),

where u0
k=0 := u0. Next, we perform a prediction, followed by a correction

iteration
∀n ≥ 0, un+1

k+1 := G∆T (unk+1)︸ ︷︷ ︸
Prediction

+ [F∆T (unk)− G∆T (unk)]︸ ︷︷ ︸
Correction

, (1.1)

where u0
k+1 := u0. Note that the coarse solver G is sequential, whereas the fine

solver F computes at the end of each step k the corrections in parallel. When the
algorithm converges, k → ∞, equation (1.1) yields un+1

k+1 = F∆T (unk) and thus60

the final approximation is achieved by the accuracy of the fine propagator F
with a weaker restitution clock time. In most of the publications on applications
of the parareal algorithm, the two solvers involved in the parareal procedure are
deterministic. For instance, a parareal procedure for the Navier–Stokes equa-
tion in the context of finite elements and spectral methods has been proposed65

in [22]. A micro-macro version of the parareal algorithm for singularly perturbed
systems of ordinary differential equations (ODEs) has been illustrated in [23],
coupling a coarse propagator based on an approximate macroscopic model with
fewer degrees of freedom to a fine propagator that accurately simulates the full
microscopic dynamics. For other applications, see [24, 25] for kinetic transport70

problems or [26] for reservoir simulation. For a convergence study of the parareal
algorithm we refer to [21, 27, 28, 29]. In particular, a superlinear bound on the
convergence on bounded time intervals for the diffusion equation and the ad-
vection equation has been demonstrated in [29]. The parareal-in-time strategy
has been also applied to Monte Carlo methods, as in [30] where a parallelization75

of the Least-Square Longstaff–Schartz Monte Carlo algorithm dedicated to the
pricing in american options has been discussed. The transport kernel used in
that survey is a standard Brownian motion [31], where the coarse and fine prop-
agators are Monte Carlo solvers with different time steps. A parareal in time
version of a micro-macro Monte Carlo algorithm where the involved propagators80

3

have different time scales has also been proposed in [32], by closely following
the ideas of [23].

In this work, we explore the behaviour of a novel hybrid version of the
parareal algorithm, with a predictor based on a deterministic finite element
solver and a corrector based on a Monte Carlo solver. Our approach, inspired by85

the ground-breaking work of Legoll et al. [32], makes the use of a finite element
coarse propagator and a communication scheme between the coarse and the fine
propagator within the parareal iterations that avoids additional discretization
errors. This work contributes to the generalization of the parareel algorithm
to the framework of mixed stochastic-deterministic discretizations in order to90

address, in the full term, the neutronics problems presented above.
In order to illustrate the general features of this strategy, we apply this

method to a simple benchmark problem based on the time-dependent diffusion
equation, used as a prototype model of evolution equation. We propose an
answer to the following question: given a fixed precision, can we speed up a95

standard Monte Carlo resolution using our novel hybrid parareal approach ?
To be more explicit, assume that a supercomputer has a very large number of
processors M . A classical Monte Carlo resolution employs all the processors to
simulate M random walks on a given time interval [0, T]. The precision of this
method is of order 1/

√
M . In the parareal procedure, we propose to allocate N100

clusters of processors to the time parallelization and in each of these clusters of
processors we employM fine propagations so that the total number of processors
is equal toM×N . The statistical precision is preserved in the parareal resolution
and offers important computational savings when the number k of required
parareal iterations to reach convergence is small. In the best scenario, the105

reduction factor is close to
N

k
which means that we could simulate the physical

phenomenon on a time interval [0, N × T] with a resolution clock time equal
to a pure Monte Carlo simulation over the time interval [0, T]. Then, this
approach would be appealing in the context of radiation transport as it enables
to simulate long simulation times and to treat the much longer time-scale of110

the delayed neutrons. This paper is organized as follows. First, in Section 2,
we detail our model problem and settings. Next, in Section 3 we present the
deterministic coarse propagator. Section 4 focuses on the fine solver in terms
of a standard Monte Carlo algorithm. In Section 5, we introduce our hybrid
parareal scheme for the time-dependent diffusion equation. Finally, in Section 6115

we present a set of benchmark numerical experiments so as to illustrate the
features of the proposed approach.

2. Model problem and setting

Let Ω ⊂ Rd, d = {1, 2, 3}, be a polygonal domain and T > 0 be the up-
per boundary of the time domain [0, T] ∈ R. Let L2(Ω) be the Hilbert space
of square integrable functions on Ω. Let H1(Ω) be the space of functions in
L2(Ω) which admit a weak gradient in L2(Ω) and let H1

0 (Ω) be its zero-trace

4

subspace. We denote by H−1(Ω) the dual space of H1
0 (Ω) with the duality pair-

ing 〈·, ·〉H−1(Ω),H1
0 (Ω). We consider the time-dependent diffusion equation with

homogeneous Dirichlet boundary conditions: find u such that

∂tu−D∆u = 0 in]0, T [× Ω,

u = 0 on]0, T [× ∂Ω,

u(0, ·) = u0 in Ω.

(2.1)

Here, D > 0 is a diffusion tensor supposed constant for the sake of simplicity,
and u0 ∈ L2(Ω) is the initial condition.
The weak formulation associated to (2.1) reads as follows: find u ∈ L2(0, T ;H1

0 (Ω))
such that ∂tu ∈ L2

(
0, T ;H−1(Ω)

)
and satisfying for almost all t ∈]0, T [and

for all v ∈ H1
0 (Ω)

〈∂tu, v〉H−1(Ω),H1
0 (Ω) +D

∫
Ω

∇u ·∇v dx = 0. (2.2)

We mention the fundamental books of Lions [33], Dautray and Lions [34], and
Brezis [35], for a complete analysis of parabolic problems.120

3. Discretization methods and deterministic propagators

In this section, we present the numerical discretization of problem (2.2) to
define the coarse propagator. In particular, we specify the coarse grid for the
discretization in time. The Lagrange finite element method is presented.

3.1. Setting125

For the time discretization, we introduce a division of the interval [0, T] into
subintervals In := [tn−1, tn], 1 ≤ n ≤ Nt, such that 0 = t0 < t1 < · · · < tNt

= T .
The time steps are denoted by ∆tn = tn− tn−1, n = 1, · · · , Nt. For a function v
with sufficient regularity, we denote vn := v(tn), 0 ≤ n ≤ Nt, and we define the
approximation of the first-order time derivative thanks to the backward Euler
scheme as follows:

∂tv
n :=

vn − vn−1

∆tn
∀ 1 ≤ n ≤ Nt.

For the space discretization, we consider a conforming simplicial mesh Th of
the domain Ω, i.e. Th is a set of simplicial elements K verifying

⋃
K∈Th

K = Ω,

where the intersection of the closure of two elements of Th is either an empty
set, a common vertex, or a common l-dimensional face, 0 ≤ l ≤ d − 1. Denote
by hK the diameter of the generic element K ∈ Th and h := maxK∈Th hK .130

We denote by Vh the set of Lagrange nodes of Th. This set is partitioned
into the interior nodes V int

h and the boundary nodes Vext
h . The number of

Lagrange nodes of Th is denoted by Nh and the number of internal Lagrange
nodes is denoted by N int

h . In the following, we define the coarse propagator
G∆tn associated to the discretization of problem (2.1) corresponding to the135

finite element discretization.

5

3.2. The Lagrange finite element propagator
In this section, we assume that p ≥ 1. We define the conforming spaces

Xp
h :=

{
vh ∈ C0(Ω); vh|K ∈ Pp(K) ∀K ∈ Th

}
⊂ H1(Ω),

Xp
0h := Xp

h ∩H
1
0 (Ω),

where Pp(K) stands for the set of polynomials of total degree less than or
equal to p on the element K. The Lagrange basis functions of Xp

h are denoted
by (ψh,l)1≤l≤Nh

for xl ∈ Vh. We recall that ψh,l(x
′
l) = δl,l′ (the Kronecker

symbol) for all 1 ≤ l, l′ ≤ Nh. Given the data u0
h ∈ L2(Ω), where u0

h is some
approximation of u0 in Xp

0h, the discrete weak formulation associated to (2.2)
consists in searching, for all 1 ≤ n ≤ Nt−1, unh ∈ X

p
0h such that for all vh ∈ Xp

0h

1

∆tn

∫
Ω

(
unh − un−1

h

)
vh dx+D

∫
Ω

∇unh ·∇vh dx = 0. (3.1)

Expressing unh in the Lagrange basis (ψh,l)1≤l≤N int
h

, problem (3.1) reads

AnUn = F n−1. (3.2)

Here, Un ∈ RN int
h is the unknown vector expressed nodewise, satisfying

unh :=

N int
h∑

l=1

(Un)l ψh,l,

and An ∈ RN int
h ,N int

h is a sparse matrix defined by

An
l,l′ :=

1

∆tn

∫
Ω

ψh,lψh,l′ dx+D
∫

Ω

∇ψh,l ·∇ψh,l′ dx ∀1 ≤ l, l′ ≤ N int
h .

The right-hand side vector F n−1 ∈ RN int
h is defined as[

F n−1
]
l

:=
1

∆tn

∫
Ω

un−1
h ψh,l dx ∀1 ≤ l ≤ N int

h .

In practice, we choose for the sake of simplicity, all the time steps to be equal:
∆tn = ∆t. Thus, applying the propagator G∆tn amounts to solving (3.2) and
yields:

Un = G∆tn

(
Un−1

)
with G∆tn

(
Un−1

)
:= A−1 × F n−1.

Remark 3.1. For each of the discretization methods described above, the re-
sulting linear system could also be solved by an iterative algebraic solver, which140

is a popular approach to speed up the numerical resolution. We mention for
instance the GMRES [36], the PCG [37] and the multigrid algorithm [38]. In
the present case, the matrix A is symmetric positive definite: then, the fastest
iterative solver would be the multigrid algorithm.

Remark 3.2. The resolution of (2.1) is also possible for different boundary145

conditions. For instance, when Neumann boundary conditions are used, H1(Ω)
is the set of test functions and the number of unknowns is set to Nh.

6

4. The Monte Carlo solver as a fine propagator

In this section, we describe the resolution of (2.1) by the Monte Carlo
method. In the Monte Carlo procedure, we propagate a finite number of par-150

ticles following an appropriate stochastic process over a time window. The
positions of these particles at the end of the window are then used to estimate
the solution of (2.1) in each element K of a given mesh Th (the properties of
this mesh Th are for instance similar to the one of the finite element method).
Each particle carries a statistical weight, assigned according to some appropri-155

ate rules (see Section 5), and representative of the contribution of the particle to
the approximate solution. In the sequel,M ≥ 1 denotes the number of particles.
At the beginning of a Monte Carlo computation, we have to sample a particle
population corresponding to the initial condition u0. Next, we have to specify
how to sample each particle history starting from the initial condition and until160

the particle either leaves the viable domain or attains the final simulation time.

4.1. Sampling
In this section, we detail the sampling procedure according to a given prob-

ability density function (PDF) denoted by f . We recall several techniques avail-
able in the literature and we focus on the case d = 1 since sampling methods165

in higher dimensions are often decomposed into simpler one-dimensional sam-
pling procedures. When d = 1, the domain Ω is partitioned into intervals
Ki := [xi−1, xi], 1 ≤ i ≤ Ne where Ω = ∪Ni=1Ki and Ω = [x0, xNe

]. Here, Ne

denotes the number of intervals. We recall that a PDF f satisfies: f ≥ 0 on Ω

and
∫

Ω

f(y) dy = 1.170

4.1.1. Direct inversion of the cumulative distribution
Define the cumulative distribution function F : Ω→ [0, 1] associated to the

PDF f : Ω→ R+ by

F (x) :=

∫ x

x0

f(y) dy. (4.1)

Let ξ ∼ U ([0, 1]) be a random variable that obeys a uniform law on the interval
[0, 1]. Compute the inverse function:

x = F−1(ξ). (4.2)

Then x is distributed according to the PDF f . Equation (4.2) is also known as
the inversion theorem of the cumulative [12]. We repeat this procedureM times
to obtain a collection of M independent and identically distributed variables
obeying the PDF f .175

Remark 4.1. In some cases the cumulative function F is hard to invert.

7

4.1.2. The table lookup method
When the inversion of F is not possible analytically, numerical methods

can be used instead. First, we construct for each interval Ei the associated
cumulative distribution

Fi :=

i∑
j=1

∫ xj

xj−1

f(x) dx.

Let ξ ∼ U ([0, 1]). There exists a unique i ∈ [1, Ne] such that Fi−1 ≤ ξ < Fi.
By a linear interpolation, the approximate solution of the equation F (x) = ξ is
given by

x :=
(xi − xi−1) ξ − xiFi−1 + xi−1Fi

Fi − Fi−1
.

We repeat this procedure M times to obtain a set of sampled particle positions
obeying the interpolant of f .

Remark 4.2. Alternative sampling methods are available in the literature, as180

the rejection method and we refer to [12, Theorem 2.5] for a complete descrip-
tion.

4.2. Sampling of the initial condition
Suppose now that the initial condition u0 of the PDE given in (2.1) is a

probability density function. We use one of the sampling procedures given above185

to obtain a population of particles X0 ∈ RM . If u0 ≥ 0 is not normalized, i.e.∫
Ω
u0(x) dx 6= 1, we sample from the PDF ũ0 defined by ũ0(x) :=

u0(x)∫
Ω
u0(y) dy

.

Then, ũ0 ≥ 0 and
∫

Ω
ũ0(x) dx = 1. We obtain a collection of particle positions

that we denote by X̃0. Finally, to obtain a population of particles X0 ∈ RM

corresponding to the initial condition u0, we consider the population X̃0 and we190

attribute to each particle i a statistical weight equal to ωi =
∫

Ω
u0(y) dy. Note

that, when u0 is already a PDF, we assign to each sample particle i a statistical
weight ωi = 1.

4.3. Simulation of a Brownian motion
Concerning the fine Monte Carlo solver, we consider a subdivision of the

interval [0, T] into subintervals [t̃n−1, t̃n], 1 ≤ n ≤ N? such that 0 = t̃0 <
t̃1 < . . . < t̃N? = T . The time steps are denoted by δtn = t̃n − t̃n−1, n =
1, · · · , N?. The underlying stochastic process for the diffusion equation with
diffusion coefficient D > 0 is a Brownian motion [31, 39, 40]. The displacement
of a Brownian motion, over each time interval (δtn → 0), obeys a continuous
Gaussian probability density function. We simulate the Brownian motion at
times t̃n, n = 0, · · ·N? − 1. Knowing the position x′ at time t′ > 0 of a given

8

particle, we determine its subsequent position x at time t > t′ by sampling the
Gaussian transition kernel

T (x′, t′ → x, t) :=
1√

2πD (t− t′)
exp

(
− (x− x′)2

2D (t− t′)

)
. (4.3)

The particle displacement x−x′ follows the normal distribution law whose mean195

is 0 and whose standard deviation is D(t− t′) i.e. x− x′ ∼ N (0,D(t− t′)).
Based on (4.3), the position of the particles at time t (denoted by Xt) when

we know the positions of the particles at time t′ (denoted by Xt′) is determined
by the formula,

Xt = Xt′ +
√

2D(t− t′) S (4.4)

where S ∈ RM is a standard normal Gaussian vector. A popular approach to
generate Gaussian random variables N (0, 1) is the Box-Muller algorithm. We
refer to [41] for more details.

Finally, the approximation of the particle density
∫
K

un(x) dx at any time

step n (where we recall that un := u(n∆T)) is given by∫
K

un(x) dx ≈ 1

M

M∑
i=1

1n
i∈K × ωi. (4.5)

Here, 1n
i∈K denotes the characteristic function such that 1n

i∈K = 1 if the particle200

i belongs to the element K at time n∆T and is otherwise equal to 0. In the limit
of M → ∞, the law of large numbers ensures that the Monte Carlo sampling
will yield an unbiased estimate of the particle density u(x, t) integrated over
each mesh element.

To take into account Dirichlet boundary conditions, the particles that cross205

the spatial boundaries x = x0 or x = xNe
are killed, meaning that their simula-

tion is abandoned and they will not be considered in the histogram. The vari-
ance and the standard deviation can be computed to determine the confidence
intervals associated to the average estimates provided by (4.5); see also [42].

Remark 4.3. Concerning homogeneous Neumann boundary conditions, the210

particles crossing the spatial boundary are reflected inside the domain, ensuring
mass conservation.

4.4. Parallelized Monte Carlo
In practice, we realize the Monte Carlo computation p > 1 times indepen-

dently. We simulate p > 1 batches or replicas ofM ′ particles so thatM = p×M ′.
This is a more convenient manner to compute the Monte Carlo expectation (4.5)
as it allows parallelization per batches. More precisely, one processor is devoted
to one batch. We denote by Zn

K,j the score associated to the element K ∈ Th in
the batch j ∈ [1, p] at the fixed time step n. This score is defined as the result

9

of the Monte Carlo computation (4.5) for the batch j:

Zn
K,j :=

1

M ′

M ′∑
i=1

1n
i∈K,j × ωi. (4.6)

Here, 1n
i∈K,j denotes the characteristic function for the replica j such that

1n
i∈K,j = 1 if the particle i belongs to the element K, and is otherwise equal to

0. Then, the particle density is approximated by∫
K

un(x) dx ≈ 1

p

p∑
j=1

Zn
K,j . (4.7)

Note that for a very large number of processors the previous Monte Carlo com-
putation is unbiased as a result of the law of large numbers. The variance
denoted by Var(Zn

K) is defined in K ∈ Th by

Var(Zn
K) :=

1

p− 1

1

p

p∑
j=1

(
Zn
K,j

)2 −
1

p

p∑
j=1

Zn
K,j

2
 .

The standard deviation denoted by σ̂n is defined by

σ̂n :=
√

Var(Zn
K).

We also define the 2-sigmas Monte Carlo error bars in each mesh element K ∈
Th:

InK :=

1

p

p∑
j=1

Zn
K,j − 2σ̂n,

1

p

p∑
j=1

Zn
K,j + 2σ̂n

 . (4.8)

From the probability theory [43], the probability for the exact solution u at time
Tn to be in InK is approximately equal to 95%.215

5. A hybrid parareal Monte Carlo algorithm

We want to build a hybrid parareal scheme with a coarse propagator G given
by a deterministic solver, and a fine propagator F given by a Monte Carlo solver,
closely following the ideas of Legoll et al. [32]. Let Un ∈ Rm be the deterministic
solution. Here, m = N int

h since the finite element method is employed. The220

statistical representation of Un is still denoted by Xn and, to simplify the
notations, we denote by F∆T (Un) the whole Monte Carlo computation. In
fact, in this notation we gather the statistical representation Xn of Un, the fine
discrete evolution over a time range of ∆T , and the averaging step (4.7). Let
1 ≤ k ≤ k, be the parareal index such that Un+1

k is the approximation of Un+1.225

10

The numerical solution obtained for a batch j ∈ [1, p] at parareal iteration k
is denoted by Un+1

k,j . Then, the final solution Un+1
k is obtained by the averaging

(refer to Algorithm 1)

Un+1
k :=

1

p

p∑
j=1

Un+1
k,j . (5.1)

In the sequel, M ′ > 1 is the number of particles.

in parallel in parallel in parallel in parallel

Figure 1: Time parallelization procedure for the hybrid algorithm

In Figure 1, we present the scheme of our parareal strategy. In this example,
the time interval [0, T] is partitionned into 4 time windows: 0 = T0 < T1 <

T2 < T3 < T4 = T . We want to reach a statistical precision equal to
1√
107

. We

consider arbitrarily M = 4 × 103 processors. Here, 4 groups of processors are230

allocated to the time parallelization. Within each parallel-in-time propagation,
103 processors are available. Inside each of these processors, M ′ = 104 indepen-
dent random walks (particles) are simulated. The precision of this method is

of order
1√
107

. In a standard Monte Carlo resolution, 107 independent random

walks are simulated (103 replicas and 104 particles per replica) so that the sought235

precision is ensured. Furthermore, the cost of the parareal strategy depends on
both the number of parareal windows N and the required iteration number k
to achieve accuracy. If for instance k = 1, it means that the required clock time
of our parareal strategy is 4 times less than a pure Monte Carlo simulation,
yielding a significant computational speed-up. Another option, following the240

discussion in Section 1, is that we can explore the Brownian motion simulation
on a larger time interval [T0, T1, T2, T3, T4, · · · , T]] with T] > 0. The hybrid
Monte Carlo algorithm that we propose is the following.

11

Algorithm 1 Hybrid Monte Carlo Algorithm

1. Initialization: Choose an initial vector U0 ∈ Rm and compute a coarse
approximation Un+1

k=0 ∈ Rm of the numerical unknown Un+1 ∈ Rm at each
time observable (n+ 1) ∆T , 0 ≤ n ≤ N − 1, by the coarse propagator

Un+1
k=0 := G∆T (Un

k=0) where U0
k=0 := U0. (5.2)

for k = 1 : k
for j = 1 : p (in parallel)

for n = 0 : N − 1 (in parallel)

2. if k = 1
Compute the statistical representation X0

k,j = X0
0,j ∈RM ′

using the sampling procedure 4.1 from Un
0 with uniform

weights.
else
When n = 0, use the statistical representation X0

0,j with
uniform weights. Otherwise, employ for Xn

k−1,j the
statistical representation obtained before the average
F∆T (Un−1

k−2,j) and modify each particle weight according
to (5.5).

end

3. Compute the Monte Carlo propagation and the average.
4. Compute the correction term:

F∆T (Un
k−1,j)/G∆T (Un

k−1,j). (5.3)

end
for n = 0 : N − 1
5. Compute the prediction term G∆T (Un

k,j) and next the hybrid
solution at the time observable (n+ 1) ∆T :

Un+1
k,j := G∆T (Un

k,j)×
(
F∆T (Un

k−1,j)/G∆T (Un
k−1,j)

)
. (5.4)

6. Update the statistical weights:[
ωn+1
k,j

]
|i∈K :=

[
ω̃n
k−1,j

]
|i∈K ×

(
Un+1

k,j /F∆T (Un
k−1,j)

)
|K (5.5)

where
[
ω̃n
k−1,j

]
|i∈K is the weight of the particle i ∈ K at time

step n and parareal step k − 1 after the use of the kernel
transport (4.4) (before averaging). See also Section 5.1.

end
end

for n = 0 : N − 1 (loop for parareal update)

7. Compute Un+1
k :=

1

p

p∑
j=1

Un+1
k,j . Check the stopping criterion:

sup
∣∣Un+1

k −Un+1
k−1

∣∣≤ C√
M

with C > 0 a fixed parameter. If satisfied,

set Un+1 = Un+1
k . If not, set k := k + 1 and go back to the loop

indexed by k.
end

end

12

Remark 5.1. The first stage of Algorithm 1 provides a coarse approximation
of the solution at each observation time Tn = n∆T . Furthermore, the initial
coarse deterministic approximations provided by (5.2) are equal in all batch j ∈
[1, p]. However, the corresponding statistical versions Xn+1

k=0,j are different in
each batch j ∈ [1, p]. For the sake of clarity, we have used the notation Un+1

k=0,j

to indicate the presence of the sampling procedure on a given batch when where
used the fine propagator. Next, observe that U1

k,j is constant ∀k ≥ 1 since

U1
k+1,j = G∆T (U0

k+1,j)×
F∆T (U0

k,j)

G∆T (U0
k,j)

= F∆T (U0).

Remark 5.2. We want to point out that our hybrid numerical solution computed
from (5.4), is different –in the form but not in the substance– from the one245

presented in (1.1). Indeed the original idea is based on the general idea of an
additive group framework. As originally noticed in [44] the structure of the
solution may require another group operation. In [44] the natural set of solution
was the manifold of norm 1 functions and the group of transformation was
thus the set of rotations, here, we notice, as also proposed in [32, Section 4.2]250

in the context of the Fokker-Planck equation, that the solution of the diffusion
model (2.1) should be nonnegative and the multiplicative group framework given
by the formula (5.4) is more convenient. Note also that in the definition of the
correction factor (5.3), G∆T (Un

k−1,j) should be nonzero in all mesh elements. To
tackle this difficulty, one can add to G∆T (Un

k−1,j) the small quantity ε ≈ C/M .255

5.1. Correction of the statistical weights
On a given batch j ∈ [1, p], when the hybrid solution Un+1

k,j is computed we
need its statistical version Xn+1

k,j to compute the subsequent parareal solution
Un+2

k+1,j . Instead of sampling Un+1
k,j and thus introducing a discretization error,260

we employ the statistical version of the deterministic object F∆T (Un
k−1,j) (that

we denote F̃∆T (Un
k−1,j)) which is available but we modify each associated weight

as in equation (5.5). With this construction, the normalized histogram (i.e. the
number of particles that fall in each element divided by the total number of
particles) of the population F̃∆T (Un

k−1,j) weighted by ωn+1
k,j provided by (5.5)265

gives the deterministic representation Un+1
k,j .

Figure 2: Evolution of the statistical weights

13

An example of this procedure is provided in Figure 2 where 6 particles are
distributed in a domain composed of 2 elements K1,K2. In this example, we
assume that we have computed the parareal solution

U2
k=2,j := G∆T (U1

k=2,j)×
F∆T (U1

k=1,j)

G∆T (U1
k=1,j)

.

Instead of sampling U2
k=2,j for the computation of the subsequent parareal so-

lution U3
k=3,j , we consider the statistical representation F̃∆T (U1

k=1,j) and we
multiply each of its particle weights ωi by a correction factor αKi where i is
the index of the element containing the particle i. With such a procedure we270

observe that the normalized histogram of the population F̃∆T (U1
k=1,j) using the

new weights provides an estimate of the deterministic quantity U2
k=2,j . Note

that, in [32] other “iterators” and “matching” operators have been proposed and
tested. In our study, the simple multiplicative one has revealed sufficient for a
rapid convergence of the parareal algorithm.275

5.2. Discussion on the CPU cost
In terms of CPU cost, the Monte Carlo algorithm presented in Section 4.4

employs p processors. Therefore, if T̃ > 0 is the required simulation time for
a collection of M ′ particles to reach the time horizon T > 0 on one dedicated
processor, the overall computational time is roughly equal to T̃ . We recall here280

that the total number of particles M satisfies M = p ×M ′ and the accuracy
of the method is 1/

√
M . In the hybrid parareal resolution, assume we have a

larger number of processors, say N × p. We devote N groups of processors for
the time parallelization (we recall that the time discretization involves N time
observables) and p processors within each of these N groups. One processor285

is assimilated to one replica (or batch) so that p independent Monte Carlo
simulations are performed in parallel. We simulate M ′ random walks in each
replica so that the cumulated number of simulated particles is M = M ′ × p.
This approach displays again a

√
M convergence. In terms of CPU time, the

hybrid strategy requires a CPU time roughly equal to
k

N
× T̂ where T̂ ≈ T̃ since290

the numerical cost of the fine propagator F∆T is approximately the same in the
hybrid resolution and the standard Monte Carlo resolution. A second possibility
is to simulate the brownian motion on a larger time interval [0, T ?] (as would
be required for taking into account the effect of delayed neutrons in the neutron
transport that we indicated in the introduction) with T ? := N×T > T in a clock295

time equal to k × T̂ that is smaller than what would be achieved sequentially
i.e. N × T̂ provided k << N .

6. Numerical benchmark experiments

This section illustrates numerically the behavior of the hybrid parareal scheme
proposed above. The numerical results have been implemented using MATLAB.300

14

We consider a one dimensional domain Ω consisting in a segment of length
L = 5 m. We then solve the model

∂tu−D∂2
xxu = 0 in Ω×]0, T [,

u = 0 on ∂Ω×]0, T [,

u(x, 0) = u0(x) in Ω.

(6.1)

We test our hybrid strategy with a coarse P1 finite element propagator where
the time steps are supposed constant ∆tn = ∆t = ∆T := 2 s ∀1 ≤ n ≤ Nt,
and a fine diffusion Monte Carlo propagator having a constant time step δtn =
δt := 2×10−4 s. The definition of Nt is provided in the two following test cases.
Concerning the spatial discretization, we consider a uniform space step ∆x :=305

0.1 m. For the standard Monte Carlo resolution, we consider p = 103 processors
so that 103 independent replicas of simulation are performed in parallel. In each
replica, we consider M ′ := 104 particles so that the total number of simulated
particles is M := M ′ × p = 107. We denote by TMC

i the simulation time
associated to the replica i and by TMC the overall simulation time. We simulate310

in MATLAB the parallelism in the sense that TMC := max
1≤i≤p

TMC
i .

In the hybrid parareal resolution, as shown in Algorithm 1 and also in the
discussion of Section 5.2, we allocate N groups of processors to the time par-
allelization and p = 103 processors for each parallel-in-time propagation. We
thus have for each parallel-in-time propagation p = 103 Monte Carlo replicas
of simulations and M ′ = 104 particles are simulated in each of these replicas.
The required simulation time for the parareal strategy is more intricate. We
denote by THYB

i,n the simulation time associated to a fixed replica i and for the
time step n. Thanks to the time parallelization, the overall simulation time
for the replica i is THYB

i := max
1≤n≤N

THYB
i,n . The replicas are also parallelized so

that the required simulation time for k opened parareal iteration is given by
THYB := k max

1≤i≤p
THYB
i . In general, k is small and so the k-depency is removed.

Furthermore, the parameter C in the stopping criterion 7. of Algorithm 1 is
chosen as C = 1. For the sake of clarity, the exact solution of (2.1) is denoted
by u, the solution obtained by a full Monte Carlo algorithm is denoted by uMC,
the solution provided by the coarse finite element solver is denoted by uFEM,
and the solution given by our hybrid strategy is denoted by uHYB. The exact so-
lution u ∈ C0([0, T]×Ω) for this benchmark problem can be obtained explicitly
and reads

u(x, t) :=
2

L

∫ L

0

u0(ξ)

∞∑
n=1

sin
(nπx
L

)
sin

(
nπξ

L

)
exp

(
−Dn

2π2t

L2

)
dξ. (6.2)

We compare the performances of the full Monte Carlo algorithm and the one of
the hybrid parareal algorithm.

6.1. A first test case
The final simulation time is set to T = 10 s and then the number of time315

steps is N = Nt = 5. The diffusion coefficient D is equal to 0.5m2.s−1. The

15

0 1 2 3 4 5

Spatial domain [m]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

S
o
lu

ti
o
n

Coarse FEM solution

Monte-Carlo error

0 1 2 3 4 5

Spatial domain [m]

0

0.002

0.004

0.006

0.008

0.01

S
o
lu

ti
o
n

Coarse FEM solution

Monte-Carlo error

0 1 2 3 4 5

Spatial domain [m]

0

1

2

3

4

5

6

7

S
o
lu

ti
o
n

10 -3

Coarse FEM solution

Monte-Carlo error

0 1 2 3 4 5

Spatial domain [m]

0

1

2

3

4

5

6

S
o

lu
ti
o

n

10 -3

Coarse FEM solution

Monte-Carlo error

Figure 3: Coarse finite element resolution and statistical Monte Carlo error at time step n = 1
(top left), n = 3 (top right), n = 4 (bottom left), and n = 5 (bottom right).

initial condition u0 is taken as u0(x) :=
1

L
such that

∫ L

0

u0(x) dx = 1. To

sample the initial distribution u0, we employ the inversion theorem as described
in Section 4.1.1. Each particle i of the statistical representation of u0 has a
statistical weight ωi = 1.320

In Figure 3, we display the shape of the coarse finite element solution uFEM

for four selected time values: t = 2 s, t = 6 s, t = 8 s and t = 10 s. It
corresponds to solutions at the initial parareal stage k = 0. We observe that
the coarse solution uFEM is not within the Monte Carlo uncertainty defined
in (4.8). These are expected results as the time step ∆t associated to the coarse
propagator G is big and yields a poor prediction. Here, the Monte Carlo solution
uMC is considered as the reference method. In Figure 4, we have represented
for one selected batch (j = 1) the behavior of the coarse propagator G∆T and
the behavior of the fine propagator F∆T at the time step n = 5. Recall that

U5
k=1,j := G∆T (U4

k=1,j)︸ ︷︷ ︸
prediction

×
F∆T (U4

k=0,j)

G∆T (U4
k=0,j)︸ ︷︷ ︸

correction

16

0 1 2 3 4 5
Spatial domain [m]

0

1

2

3

4

5

6
So

lu
tio

n
10 -3

0 1 2 3 4 5
Spatial domain [m]

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

R
at

io
 C

oa
rs

e
pr

op
ag

at
io

n

Figure 4: Construction of the hybrid solution U5
k=1,j (left), and coarse propagators (right) at

time iteration n = 5 for the batch j = 1.

0 1 2 3 4 5

Spatial domain [m]

0

1

2

3

4

5

6

S
o
lu

ti
o
n

10 -3

0 1 2 3 4 5

Spatial domain [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

S
o
lu

ti
o
n

10 -3

Figure 5: Shape of the hybrid solution at k = 0 and k = 1 (left) and shape of the exact
solution and hybrid solution at k = 1 and k = 2 (right).

and

U5
k=2,j := G∆T (U4

k=2,j)︸ ︷︷ ︸
prediction

×
F∆T (U4

k=1,j)

G∆T (U4
k=1,j)︸ ︷︷ ︸

correction

.

In Figure 4, (left) the red curve displaying G∆T (U4
k=1,j) represents the prediction

terms, as computed by the coarse propagator based on the FEM method. It is
computed fastly and its numerical cost is negligible. Next, the ratio of the green
curve F∆T (U4

k=0,j) and the blue curve G∆T (U4
k=0,j) is the correction term. It

shifts the coarse approximation G∆T (U4
k=1,j) to obtain the numerical solution325

U5
k=1,j . Also observe that the shape of the hybrid solution follows the shape of

the result of the fine propagator F∆T (U4
k=0,j). Furthermore, we observe that the

ratio
G∆T (U4

k=2,j)

G∆T (U4
k=1,j)

tends to 1, which means that, from k = 2, the approximation

is achieved by the accuracy of the fine propagator F∆T .
In Figure 5, we have displayed for the time step n = 5, the shape of the330

hybrid solution when k = 0, k = 1, k = 2, and the shape of the exact solution

17

2.4 2.6 2.8 3 3.2 3.4 3.6

Spatial domain [m]

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9
S

o
lu

ti
o
n

10 -3

0 1 2 3 4 5

Spatial domain [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
o
lu

ti
o
n

Figure 6: Hybrid solution at time iteration n = 5 and at parareal iteration k = 1, k = 2 (left),
and correction of the statistical weights (right).

u given by (6.2). At k = 0, which corresponds to the initial step of the hybrid
Algorithm 1, we observe that the solution U5

k=0 is far from the exact solution u
and lies outside the Monte Carlo uncertainty. Such observation is coherent with
the fact that the initial stage corresponds to a poor prediction of the numerical335

solution. Next, at k = 1, a correction step is performed yielding an accurate
numerical solution as we can see in the second graph of Figure 5. Furthermore,
observe that

∥∥(u− uHYB
)

(x, T)
∥∥
L∞(Ω)

≈ 3× 10−4 which is in agreement with
the Monte Carlo convergence precision. Next, we observe that the solutions
U5

k=1 and U5
k=2 coincide on the spatial domain Ω in the sense that the stopping340

criterion 7. of Algorithm 1 is satisfied. Thus our hybrid strategy requires only
2 parareal iterations to converge for the current time step.

Figure 6 is a crucial complement to Figure 5, as it shows that the hybrid
solutions U5

k=1 and U5
k=2 lies within the Monte Carlo uncertainty. We zoomed

on the the right cells of Figure 5. Furthermore, we have represented on the right345

the effect of the correction of the statistical weights as explained in Section 5.1.
The blue curve represents the deterministic parareal solution U3

k=2,j . Sampling
a population of particles fromU3

k=2,j denoted byX3
k=2,j involves a discretization

error as the normalized histogram of X3
k=2,j (green curve) does not give back

U3
k=2,j . However, employing the available population F∆T (U2

k=1) for which we350

modify the weight of all the particles contained thereby (refer to Section 5.1)
enables to fully recover the deterministic representation U3

k=2.
In Figure 7, we represented for the full Monte Carlo resolution and the hybrid

parareal resolution the error in the L∞(0, T ;L∞(Ω)) norm as a function of the
number of particles, i.e.

∥∥u− uMC
∥∥
L∞(0,T ;L∞(Ω))

and
∥∥u− uHYB

∥∥
L∞(0,T ;L∞(Ω))

.
Recall that

‖u− v‖L∞(0,T ;L∞(Ω)) = max
t∈[0,T]

max
x∈Ω
| (u− v) (x, t)| (6.3)

We observe that the curves of the Monte Carlo error and of the hybrid error

behave like
1√
M

which is in agreement with the Monte Carlo convergence rate.
355

18

10 4 10 5 10 6 10 7

Number of particles

10 -4

10 -3

10 -2

10 -1

Figure 7: Error in the L∞(0, T ;L∞(Ω)) norm between u and uMC, and error in the
L∞(0, T ;L∞(Ω)) between u and uHYB as a function of the number of particles.

0 200 400 600 800 1000
Number of batch

20

40

60

80

100

120

140

160

180

C
PU

 ti
m

e

Full Monte-Carlo resolution
Hybrid parareal resolution

0 200 400 600 800 1000

Number of batch

0

0.5

1

1.5

2

C
u
m

u
la

te
d
 C

P
U

 t
im

e

10 5

Full Monte-Carlo resolution

Hybrid parareal resolution

Figure 8: CPU time for each batch (left) and cumulated CPU time with no parallelization
per batch (right).

Monte Carlo resolution
Number of particles Number of processors CPU time

105 102 1653.4 s
104 103 164.09 s
103 104 16.86 s
102 105 1.78 s

Table 1: Computational cost of the full Monte Carlo resolution

19

Hybrid parareal resolution

Number
of

processors
time parallelization

Number
of

replicas for each
parallel-in-time
propagation

Number
of

particles
for one
replica j

CPU
time
k = 1

CPU
time
k = 2

Gain
factor
k = 1

Gain
factor
k = 2

5 102 105 335.76 s 537.16 s 4.92 3.04

5 103 104 33.05 s 53.1 s 4.96 3.09

5 104 103 3.39 s 5.49 s 4.97 3.07

5 105 102 0.35 s 0.58 s 5.08 3.02

Table 2: Computational cost of the hybrid parareal resolution

The details of the efficiency of our Hybrid strategy can finally be appreci-
ated in Figure 8 and Table 1 and 2. We compared in Figure 8 the global CPU
time of the simulation for two different strategies: when the parallelization per
batch is used (left Figure 8), and when no parallelization per batch is used (right
Figure 8). More precisely, on the left Figure, one processor is assigned to each360

batch. For the full Monte Carlo algorithm, 103 processors are available. For
the hybrid parareal strategy 5× 103 processors are available : 5 groups for the
time parallelization times 103 for the replicas. We observe from the left Figure
that the full Monte Carlo expectation is computed in each batch after roughly
164 seconds. The average CPU time TMC for the standard Monte Carlo simu-365

lation (with parallelization) is equal to about 164 seconds (see Table 1). It is
roughly 1000 times less than the sequential Monte Carlo resolution (right Fig-
ure). Concerning our hybrid parareal strategy, at k = 1, the solution for each
batch is computed only after roughly 33 seconds (see the left Figure) which is
much faster than the parallelized Monte Carlo resolution. It yields a gain factor370

equal to 4.96 in the overall CPU time which is very close to ideal scaling equal

to
N

k
= 5. When no parallelization per batch occurs (right Figure) the stan-

dard Monte Carlo algorithm computes the expectation sequentially (only one
processor is available). However, the hybrid strategy employs 5 processors for
the correction step which makes this method faster. Besides, the total cumu-375

lated CPU time when no parallelization per batches occurs is equal to 3.3× 104

seconds which is also less expensive than the sequential Monte Carlo algorithm.
For the sake of completness, we also test in Table 1 and 2 the influence of the
number of particles/batches on the CPU time. We see that the hybrid resolu-
tion is always much faster than the standard full Monte Carlo resolution with a380

gain factor roughly equal to 5 when k = 1 parareal iteration is performed and
roughly equal to 3 when k = 2 parareal iterations are performed. It is close to
the ideal scaling equal to 2.5. Finally, we proved that the excess of processors
enables to speed-up a Monte Carlo resolution and may serves to simulate longer
time domains as shown in Section 6.3.385

20

0 1 2 3 4 5

Spatial domain [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
o
lu

ti
o
n

Figure 9: Solution at initial time t = 0 (left) and histogram of the statistical population at
initial time t = 0 (right) for the second test case.

6.2. A second test case
For this second example, we consider a different initial solution and we choose

a coarse propagator that weakly degrades the physics of the problem. The final
simulation time is T = 14 s. The diffusion coefficient is set to D = 0.5m2.s−1

for the fine propagator and D = 0.48m2.s−1 for the coarse propagator. “The
artificial” degradation of the coarse propagator in this numerical experiment,
in the same spirit as the one proposed in reference [32], aims at mimicking the
situation where, for a more complex problem (e.g. neutronics), the macroscopic
model is less accurate than in our toy model. The coarse propagator is a P1

finite element solver with constant time step ∆t = 2 s and the fine propagator
is the Monte Carlo solver with constant time step δt = 2×10−4 s. Furthermore,
the coarse time step ∆t is chosen equal to the observable window ∆T . In this

test case, we still consider a statistical precision of order
1√
107

. In the Monte

Carlo procedure, we consider M ′ = 105 particles and we simulate p = 102

independent replicas (batches) so that the total number of particles isM = 107.
In the hybrid parareal algorithm, 7 groups of processors are allocated to the
time parallelization. For each fine parallel-in-time propagation, 102 processors
are available. In each of these processors (replicas), 105 particles are simulated.
Therefore, the cumulated number of simulated particles is also equal to 107.
The initial condition u0 is chosen as

u0(x) =
1

L

(
1 + cos

(πx
L

))
.

Here, u0 is a PDF, and to each particle i of the statistical representation of u0 is
assigned the statistical weight ωi = 1. In Figure 9 we represent the shape of the
initial guess and its statistical version. The repartition of the particles in each
intervals follows the methodology of the inversion of the cumulative function390

(see Section 4.1.1.) However, before employing the fine solver in the parareal
stages we use the table lookup method (see Section 4.1.2) to find numerically
the intervals where each particle lives.

21

0 1 2 3 4 5

Spatial domain [m]

0

0.5

1

1.5

2

2.5

S
o

lu
ti
o

n

10 -3

3.7 3.8 3.9 4 4.1 4.2

Spatial domain [m]

0.8

0.9

1

1.1

1.2

1.3

S
o

lu
ti
o

n

10 -3

Figure 10: Shape of the hybrid solution at n = 7 and k = 0, k = 1, k = 2, and shape of the
exact solution.

0 20 40 60 80 100

Number of batch

500

1000

1500

2000

C
P

U
 t
im

e

Full-Monte Carlo resolution

Hybrid parareal resolution

0 20 40 60 80 100

Number of batch

0

0.5

1

1.5

2

C
u
m

u
la

te
d
 C

P
U

 t
im

e

10 5

Full-Monte Carlo resolution

Hybrid parareal resolution

Figure 11: CPU time for each batch (left) and cumulated CPU time with no parallelization
per batch (right).

Figure 10 displays at the final time step n = 7, the shape of the analytical
solution and the parareal sequence U7

k for k = 0, k = 1, and k = 2. Note that395

the solution U7
k=0 corresponds to the coarse solution obtained using the coarse

solver while U7
k=1 and U7

k=2 correspond to corrected solutions as the fine solver
is applied. We observe from the left figure that the coarse solution (black curve)
is far from the analytical solution. Next, we see that a first parareal step will
bring the solution (purple curve) closer to the analytical solution (green curve)400

but is not sufficiently close to stop the parareal iterations. Indeed, in the right
figure we perform a zoom on several cells and we observe that a second parareal
iteration (red curve) is required to converge to the analytical solution and to
have the analytical solution within the Monte Carlo error bar. In Figure 11
we represent for the two strategies the required CPU time. Similarly as for405

the first test case, we observe that the hybrid resolution with this time k = 2
parareal iterations is less expensive than the classical Monte Carlo resolution.
The hybrid resolution computes the expectation in each batch after roughly 540
seconds whereas the classical Monte Carlo method computes the expectation in
each batch after roughly 1810 seconds. Then, when parallelized Monte Carlo410

22

is considered, our hybrid stratedy yields a gain factor in the overall CPU time
of around 3.44. The figure on the right is a complement and shows that if no
parallelization per batch occurs the hybrid strategy is still better and reduces
significantly the computational cost.

6.3. A third test case: extension to long simulation times with higher precision415

For this third example, we consider the two different situations described in
Section 5.2. First, we consider a longer simulation time T = 50 s. The initial

condition u0 is the same as in the first test case: u0(x) :=
1

L
and the inverse of

the cumulative procedure is used to sample u0. The diffusion coefficient is set
to D = 0.25m2.s−1 for both propagators to avoid having solutions getting too420

small because of the Dirichlet boundary conditions. The coarse propagator is
still a P1 finite element solver with constant time step ∆t := 2 s and the fine
propagator is a Monte Carlo solver with constant time step δt = 2×10−3 s. Here
also, the coarse time step ∆t is chosen equal to be the observable time window

∆T . The statistical precision for both numerical schemes is set to
1√
108

. In the425

Monte Carlo resolution, we consider 103 processors (replicas) and 105 particles
per replicas. In our hybrid parareal resolution, 25 groups of processors are
affected to the time parallelization. Therefore, 25 replicas of simulation are
launched in parallel (one per each time observable). In each time replica, 103

processors are available. We decide to simulate M ′ = 105 random walks in each430

of these 103 processors.

0 1 2 3 4 5
Spatial domain [m]

0

0.5

1

1.5

2

2.5

So
lu

tio
n

10 -3

1 2 3
Parareal iterations

10 -4

10 -3

Pa
ra

re
al

 e
rro

r

error

Figure 12: Shape of the hybrid solution at n = 12 and k = 1, k = 2, k = 3, and shape of the
exact solution.

In Figure 12 we display the shape of the hybrid parareal solution at the time
step n = 12 at k = 1, k = 2, and k = 3. We observe that k = 3 parareal
iterations are required to converge in the sense of the stopping criterion (see
point 7. of Algorithm 1). The right Figure shows the behavior of the error435 ∥∥u− uHYB

∥∥
L∞(Ω)

at n = 12. We thus see that from the third parareal iteration
the error stagnates.

23

0 1 2 3 4 5

Spatial domain [m]

0

0.5

1

1.5

2
S

o
lu

ti
o
n

10
-4

0 2 4 6 8
Parareal iterations

10 -5

10 -4

Pa
ra

re
al

 e
rro

r

error

Figure 13: Shape of the hybrid solution at n = 25 and shape of the exact solution.

The Figure 13 is a complement to Figure 12. We represented the shape of
the numerical solution at the final simulation time. We observe that k = 5
parareal iterations are required to satisfy the stopping criterion 7. of Algo-440

rithm 1. Therefore, as for the two previous test cases, few parareal iterations
are required to converge, leading to an important computational speed-up.

0 5 10 15 20 25
Time

0

50

100

150

200

250

300

350

C
PU

tim
e

Numerical cost

5 10 15 20 25

Time

2

2.5

3

3.5

4

N
u
m

b
e
r

o
f
p
a
ra

re
a
l
it
e
ra

ti
o
n
s

Figure 14: CPU time for the hybrid resolution (left) and number of parareal iterations (right).

Finally, in Figure 14 we illustrate the second feature of the hybrid algorithm
as described in Section 5.2. We have represented the cumulated CPU time for
the hybrid scheme as a function of the time steps (left) and the required number445

of parareal iterations to converge for each of these time steps (right). In the
standard Monte Carlo method the final simulation time is taken equal to T = 8 s
and the required simulation time to reach this time horizon T is approximately
equal to 245 s. In the left Figure we show that our parareal procedure enables
to reach a time horizon T ? ≈ 17 s with the same CPU cost as the pure Monte450

Carlo resolution. For each time slice, the hybrid resolution requires 3 parareal
iterations to satisfy the stopping criterion 7. of Algorithm 1. Thus, our parareal
strategy is a very interesting approach as it enables to simulate a diffusion
process over a longer time interval for a price equal to the one involved by a
pure Monte Carlo simulation on a shorter interval.455

24

7. Conclusions

In this work, we have designed a parareal hybrid version of a Monte Carlo
algorithm. We used the parareal-in-time procedure to speed-up a Monte Carlo
algorithm. We showed numerically that our strategy requires few parareal iter-
ations to reach convergence. Besides, our hybrid resolution is very fast in terms460

of CPU time compared to a standard full Monte Carlo resolution. Future work
will concern the application of the proposed hybrid scheme to more sophisticate
transport models: in particular, we will replace the diffusion equation by the
7-dimensional Boltzmann equation for neutron propagation, including the full
physics of scattering, capture and fission events.465

Acknowledgments: This work was funded by the ANR project “Ciné-Para”
(ANR-15-CE23-0019). This work has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No 810367 - project EMC2) (YM) and470

from the European High Performance Computing Joint Undertaking (EuroHPC
JU) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No 955701 - project TIME-X) (YM). We thank Tony Lelièvre
(CERMICS and École des Ponts ParisTech) for many useful comments.

References475

[1] A. Quarteroni, A. Valli, Numerical approximation of partial differen-
tial equations, Vol. 23 of Springer Series in Computational Mathematics,
Springer-Verlag, Berlin, 1994.

[2] C. Bernardi, Y. Maday, F. Rapetti, Discrétisations variationnelles de prob-
lèmes aux limites elliptiques, Vol. 45 of Mathématiques & Applications480

(Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2004.

[3] S. C. Brenner, L. R. Scott, The mathematical theory of finite element
methods, Vol. 15 of Texts in Applied Mathematics, Springer-Verlag, New
York, 1994. doi:10.1007/978-1-4757-4338-8.
URL https://doi.org/10.1007/978-1-4757-4338-8485

[4] E. Godlewski, P.-A. Raviart, Numerical approximation of hyperbolic sys-
tems of conservation laws, Vol. 118 of Applied Mathematical Sciences,
Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-0713-9.
URL https://doi.org/10.1007/978-1-4612-0713-9

[5] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: Handbook490

of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland,
Amsterdam, 2000, pp. 713–1020.

[6] B. Després, Numerical methods for Eulerian and Lagrangian conservation
laws, Frontiers in Mathematics, Birkhäuser/Springer, Cham, 2017. doi:

25

https://doi.org/10.1007/978-1-4757-4338-8
https://doi.org/10.1007/978-1-4757-4338-8
https://doi.org/10.1007/978-1-4757-4338-8
http://dx.doi.org/10.1007/978-1-4757-4338-8
https://doi.org/10.1007/978-1-4757-4338-8
https://doi.org/10.1007/978-1-4612-0713-9
https://doi.org/10.1007/978-1-4612-0713-9
https://doi.org/10.1007/978-1-4612-0713-9
http://dx.doi.org/10.1007/978-1-4612-0713-9
https://doi.org/10.1007/978-1-4612-0713-9
https://doi-org/10.1007/978-3-319-50355-4
https://doi-org/10.1007/978-3-319-50355-4
https://doi-org/10.1007/978-3-319-50355-4
http://dx.doi.org/10.1007/978-3-319-50355-4
http://dx.doi.org/10.1007/978-3-319-50355-4
http://dx.doi.org/10.1007/978-3-319-50355-4

10.1007/978-3-319-50355-4.495

URL https://doi-org/10.1007/978-3-319-50355-4

[7] B. Rivière, Discontinuous Galerkin methods for solving elliptic and
parabolic equations, Vol. 35 of Frontiers in Applied Mathematics, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008,
theory and implementation. doi:10.1137/1.9780898717440.500

URL https://doi.org/10.1137/1.9780898717440

[8] D. A. Di Pietro, A. Ern, Mathematical aspects of discontinuous Galerkin
methods, Vol. 69 of Mathématiques & Applications (Berlin) [Math-
ematics & Applications], Springer, Heidelberg, 2012. doi:10.1007/
978-3-642-22980-0.505

URL https://doi.org/10.1007/978-3-642-22980-0

[9] V. Dolejší, M. Feistauer, Discontinuous Galerkin method, Vol. 48
of Springer Series in Computational Mathematics, Springer, Cham,
2015, analysis and applications to compressible flow. doi:10.1007/
978-3-319-19267-3.510

URL https://doi-org/10.1007/978-3-319-19267-3

[10] M. H. Kalos, P. A. Whitlock, Monte Carlo methods. Vol. I, A Wiley-
Interscience Publication, John Wiley & Sons, Inc., New York, 1986, basics.
doi:10.1002/9783527617395.
URL https://doi.org/10.1002/9783527617395515

[11] G. Ökten, Solving linear equations by Monte Carlo simulation, SIAM J.
Sci. Comput. 27 (2) (2005) 511–531. doi:10.1137/04060500X.
URL https://doi.org/10.1137/04060500X

[12] I. Lux, L. Koblinger, Monte Carlo particle transport methods: neutron and
photon calculations, CRC Press, 1991.520

URL https://books.google.fr/books?id=4u7vAAAAMAAJ

[13] M. Mascagni, N. A. Simonov, Monte Carlo methods for calculating some
physical properties of large molecules, SIAM J. Sci. Comput. 26 (1) (2004)
339–357. doi:10.1137/S1064827503422221.
URL https://doi.org/10.1137/S1064827503422221525

[14] Y. I. Khlopkov, Z. Y. M. Myint, A. Y. Khlopkov, Monte Carlo method and
its parallel computing technique in molecular gas dynamics, International
Journal of Educational Research and Information Science 2 (1) (2015) 1.

[15] H. Zaidi, C. Labbé, C. Morel, Implementation of an environment for
Monte Carlo simulation of fully 3-d positron tomography on a high-530

performance parallel platform, Parallel Computing 24 (9) (1998) 1523 –
1536. doi:https://doi.org/10.1016/S0167-8191(98)00069-6.
URL http://www.sciencedirect.com/science/article/pii/
S0167819198000696

26

http://dx.doi.org/10.1007/978-3-319-50355-4
http://dx.doi.org/10.1007/978-3-319-50355-4
https://doi-org/10.1007/978-3-319-50355-4
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/1.9780898717440
http://dx.doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi-org/10.1007/978-3-319-19267-3
http://dx.doi.org/10.1007/978-3-319-19267-3
http://dx.doi.org/10.1007/978-3-319-19267-3
http://dx.doi.org/10.1007/978-3-319-19267-3
https://doi-org/10.1007/978-3-319-19267-3
https://doi.org/10.1002/9783527617395
http://dx.doi.org/10.1002/9783527617395
https://doi.org/10.1002/9783527617395
https://doi.org/10.1137/04060500X
http://dx.doi.org/10.1137/04060500X
https://doi.org/10.1137/04060500X
https://books.google.fr/books?id=4u7vAAAAMAAJ
https://books.google.fr/books?id=4u7vAAAAMAAJ
https://books.google.fr/books?id=4u7vAAAAMAAJ
https://books.google.fr/books?id=4u7vAAAAMAAJ
https://doi.org/10.1137/S1064827503422221
https://doi.org/10.1137/S1064827503422221
https://doi.org/10.1137/S1064827503422221
http://dx.doi.org/10.1137/S1064827503422221
https://doi.org/10.1137/S1064827503422221
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://dx.doi.org/https://doi.org/10.1016/S0167-8191(98)00069-6
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://www.sciencedirect.com/science/article/pii/S0167819198000696
http://www.sciencedirect.com/science/article/pii/S0167819198000696

[16] M. Faucher, D. Mancusi, A. Zoia, New kinetic simulation capabilities for535

Tripoli-4 R©: Methods and applications, Ann. Nucl. Energy 120 (2018) 74–
88. doi:10.1016/j.anucene.2018.05.030.

[17] N. Castin, G. Bonny, A. Bakaev, C. Ortiz, A. Sand, D. Ter-
entyev, Object kinetic Monte Carlo model for neutron and
ion irradiation in tungsten: Impact of transmutation and car-540

bon impurities, Journal of Nuclear Materials 500 (2018) 15–25.
doi:https://doi.org/10.1016/j.jnucmat.2017.12.014.
URL https://www.sciencedirect.com/science/article/pii/
S0022311517312813

[18] J. Nievergelt, Parallel methods for integrating ordinary differential equa-545

tions, Comm. ACM 7 (1964) 731–733. doi:10.1145/355588.365137.
URL https://doi-org/10.1145/355588.365137

[19] W. L. Miranker, W. Liniger, Parallel methods for the numerical integration
of ordinary differential equations, Math. Comp. 21 (1967) 303–320. doi:
10.2307/2003233.550

URL https://doi-org/10.2307/2003233

[20] P. Chartier, B. Philippe, A parallel shooting technique for solving dis-
sipative ODEs, Computing 51 (3-4) (1993) 209–236. doi:10.1007/
BF02238534.
URL https://doi-org/10.1007/BF02238534555

[21] J.-L. Lions, Y. Maday, G. Turinici, Résolution d’EDP par un schéma en
temps “pararéel”, C. R. Acad. Sci. Paris Sér. I Math. 332 (7) (2001) 661–
668. doi:10.1016/S0764-4442(00)01793-6.
URL https://doi.org/10.1016/S0764-4442(00)01793-6

[22] P. F. Fischer, F. Hecht, Y. Maday, A parareal in time semi-implicit approx-560

imation of the Navier-Stokes equations, in: Domain decomposition meth-
ods in science and engineering, Vol. 40 of Lect. Notes Comput. Sci. Eng.,
Springer, Berlin, 2005, pp. 433–440. doi:10.1007/3-540-26825-1_44.
URL https://doi-org/10.1007/3-540-26825-1_44

[23] F. Legoll, T. Lelièvre, G. Samaey, A micro-macro parareal algorithm: ap-565

plication to singularly perturbed ordinary differential equations, SIAM J.
Sci. Comput. 35 (4) (2013) A1951–A1986. doi:10.1137/120872681.
URL https://doi.org/10.1137/120872681

[24] A.-M. Baudron, J.-J. Lautard, Y. Maday, O. Mula, The parareal in time
algorithm applied to the kinetic neutron diffusion equation, in: Domain570

decomposition methods in science and engineering XXI, Vol. 98 of Lect.
Notes Comput. Sci. Eng., Springer, Cham, 2014, pp. 437–445.

[25] A.-M. Baudron, J.-J. Lautard, Y. Maday, M. K. Riahi, J. Salomon, Parareal
in time 3D numerical solver for the LWR benchmark neutron diffusion

27

http://dx.doi.org/10.1016/j.anucene.2018.05.030
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://www.sciencedirect.com/science/article/pii/S0022311517312813
http://dx.doi.org/https://doi.org/10.1016/j.jnucmat.2017.12.014
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://www.sciencedirect.com/science/article/pii/S0022311517312813
https://doi-org/10.1145/355588.365137
https://doi-org/10.1145/355588.365137
https://doi-org/10.1145/355588.365137
http://dx.doi.org/10.1145/355588.365137
https://doi-org/10.1145/355588.365137
https://doi-org/10.2307/2003233
https://doi-org/10.2307/2003233
https://doi-org/10.2307/2003233
http://dx.doi.org/10.2307/2003233
http://dx.doi.org/10.2307/2003233
http://dx.doi.org/10.2307/2003233
https://doi-org/10.2307/2003233
https://doi-org/10.1007/BF02238534
https://doi-org/10.1007/BF02238534
https://doi-org/10.1007/BF02238534
http://dx.doi.org/10.1007/BF02238534
http://dx.doi.org/10.1007/BF02238534
http://dx.doi.org/10.1007/BF02238534
https://doi-org/10.1007/BF02238534
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi-org/10.1007/3-540-26825-1_44
https://doi-org/10.1007/3-540-26825-1_44
https://doi-org/10.1007/3-540-26825-1_44
http://dx.doi.org/10.1007/3-540-26825-1_44
https://doi-org/10.1007/3-540-26825-1_44
https://doi.org/10.1137/120872681
https://doi.org/10.1137/120872681
https://doi.org/10.1137/120872681
http://dx.doi.org/10.1137/120872681
https://doi.org/10.1137/120872681
https://doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1016/j.jcp.2014.08.037

transient model, J. Comput. Phys. 279 (2014) 67–79. doi:10.1016/j.575

jcp.2014.08.037.
URL https://doi.org/10.1016/j.jcp.2014.08.037

[26] I. Garrido, M. S. Espedal, G. E. Fladmark, A convergent algorithm for time
parallelization applied to reservoir simulation, in: T. J. Barth, M. Griebel,
D. E. Keyes, R. M. Nieminen, D. Roose, T. Schlick, R. Kornhuber,580

R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, J. Xu (Eds.), Domain
Decomposition Methods in Science and Engineering, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2005, pp. 469–476.

[27] L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zérah, Parallel-in-time
molecular-dynamics simulations, Phys. Rev. E 66 (2002) 057701. doi:585

10.1103/PhysRevE.66.057701.
URL https://link.aps.org/doi/10.1103/PhysRevE.66.057701

[28] G. Bal, On the convergence and the stability of the parareal algorithm to
solve partial differential equations, in: Domain decomposition methods in
science and engineering, Vol. 40 of Lect. Notes Comput. Sci. Eng., Springer,590

Berlin, 2005, pp. 425–432. doi:10.1007/3-540-26825-1_43.
URL https://doi.org/10.1007/3-540-26825-1_43

[29] M. J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-
integration method, SIAM J. Sci. Comput. 29 (2) (2007) 556–578. doi:
10.1137/05064607X.595

URL https://doi.org/10.1137/05064607X

[30] G. Pagès, O. Pironneau, G. Sall, The parareal algorithm for american
options, SIAM J. Financial Math. 9 (3) (2018) 966–993. doi:10.1137/
17M1138832.
URL https://doi.org/10.1137/17M1138832600

[31] L. Infeld, On the theory of Brownian motion, University of Toronto Studies,
Applied Mathematics Series, no. 4, University of Toronto Press, Toronto,
Ont., 1940.

[32] F. Legoll, T. Lelièvre, K. Myerscough, G. Samaey, Parareal computation
of stochastic differential equations with time-scale separation: a numerical605

convergence study, Comput. Vis. Sci. 23 (1-4) (2020) Paper No. 9, 18.
doi:10.1007/s00791-020-00329-y.
URL https://doi-org/10.1007/s00791-020-00329-y

[33] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites
non linéaires, Dunod; Gauthier-Villars, Paris, 1969.610

[34] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for
science and technology. Vol. 2, Springer-Verlag, Berlin, 1988, functional
and variational methods, With the collaboration of Michel Artola, Marc
Authier, Philippe Bénilan, Michel Cessenat, Jean Michel Combes, Hélène

28

https://doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1016/j.jcp.2014.08.037
http://dx.doi.org/10.1016/j.jcp.2014.08.037
http://dx.doi.org/10.1016/j.jcp.2014.08.037
http://dx.doi.org/10.1016/j.jcp.2014.08.037
https://doi.org/10.1016/j.jcp.2014.08.037
https://link.aps.org/doi/10.1103/PhysRevE.66.057701
https://link.aps.org/doi/10.1103/PhysRevE.66.057701
https://link.aps.org/doi/10.1103/PhysRevE.66.057701
http://dx.doi.org/10.1103/PhysRevE.66.057701
http://dx.doi.org/10.1103/PhysRevE.66.057701
http://dx.doi.org/10.1103/PhysRevE.66.057701
https://link.aps.org/doi/10.1103/PhysRevE.66.057701
https://doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1007/3-540-26825-1_43
http://dx.doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1137/05064607X
https://doi.org/10.1137/05064607X
https://doi.org/10.1137/05064607X
http://dx.doi.org/10.1137/05064607X
http://dx.doi.org/10.1137/05064607X
http://dx.doi.org/10.1137/05064607X
https://doi.org/10.1137/05064607X
https://doi.org/10.1137/17M1138832
https://doi.org/10.1137/17M1138832
https://doi.org/10.1137/17M1138832
http://dx.doi.org/10.1137/17M1138832
http://dx.doi.org/10.1137/17M1138832
http://dx.doi.org/10.1137/17M1138832
https://doi.org/10.1137/17M1138832
https://doi-org/10.1007/s00791-020-00329-y
https://doi-org/10.1007/s00791-020-00329-y
https://doi-org/10.1007/s00791-020-00329-y
https://doi-org/10.1007/s00791-020-00329-y
https://doi-org/10.1007/s00791-020-00329-y
http://dx.doi.org/10.1007/s00791-020-00329-y
https://doi-org/10.1007/s00791-020-00329-y
https://doi-org/10.1007/978-3-642-61566-5
https://doi-org/10.1007/978-3-642-61566-5
https://doi-org/10.1007/978-3-642-61566-5

Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily, Translated615

from the French by Ian N. Sneddon. doi:10.1007/978-3-642-61566-5.
URL https://doi-org/10.1007/978-3-642-61566-5

[35] H. Brezis, Functional analysis, Sobolev spaces and partial differential equa-
tions, Universitext, Springer, New York, 2011.

[36] Y. Saad, Iterative methods for sparse linear systems, 2nd Edition, Society620

for Industrial and Applied Mathematics, Philadelphia, PA, 2003. doi:
10.1137/1.9780898718003.
URL https://doi.org/10.1137/1.9780898718003

[37] C. T. Kelley, Iterative methods for linear and nonlinear equations, Vol. 16
of Frontiers in Applied Mathematics, Society for Industrial and Applied625

Mathematics (SIAM), Philadelphia, PA, 1995, with separately available
software.
URL https://doi.org/10.1137/1.9781611970944

[38] W. L. Briggs, A multigrid tutorial, Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1987.630

[39] E. Nelson, Dynamical theories of Brownian motion, Princeton University
Press, Princeton, N.J., 1967.

[40] S. Umarov, M. Hahn, K. Kobayashi, Beyond the triangle: Brownian
motion, Ito calculus, and Fokker-Planck equation—fractional generaliza-
tions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.635

doi:10.1142/10734.
URL https://doi-org/10.1142/10734

[41] G. E. P. Box, M. E. Muller, A note on the generation of random normal
deviates, Ann. Math. Statist. 29 (2) (1958) 610–611. doi:10.1214/aoms/
1177706645.640

URL https://doi.org/10.1214/aoms/1177706645

[42] S. C. Port, Theoretical probability for applications, Wiley Series in Prob-
ability and Mathematical Statistics: Probability and Mathematical Statis-
tics, John Wiley & Sons, Inc., New York, 1994, a Wiley-Interscience Pub-
lication.645

URL https://books.google.fr/books?id=MqEZAQAAIAAJ

[43] J. Jacod, P. Protter, Probability essentials, 2nd Edition, Universitext,
Springer-Verlag, Berlin, 2003. doi:10.1007/978-3-642-55682-1.
URL https://doi-org/10.1007/978-3-642-55682-1

[44] Y. Maday, G. Turinici, A parallel in time approach for quantum control:650

the parareal algorithm, in: Proceedings of the 41st IEEE Conference on
Decision and Control, 2002., Vol. 1, IEEE, 2002, pp. 62–66.

29

http://dx.doi.org/10.1007/978-3-642-61566-5
https://doi-org/10.1007/978-3-642-61566-5
https://doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1137/1.9781611970944
https://doi-org/10.1142/10734
https://doi-org/10.1142/10734
https://doi-org/10.1142/10734
https://doi-org/10.1142/10734
https://doi-org/10.1142/10734
http://dx.doi.org/10.1142/10734
https://doi-org/10.1142/10734
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://books.google.fr/books?id=MqEZAQAAIAAJ
https://books.google.fr/books?id=MqEZAQAAIAAJ
https://doi-org/10.1007/978-3-642-55682-1
http://dx.doi.org/10.1007/978-3-642-55682-1
https://doi-org/10.1007/978-3-642-55682-1

