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A B S T R A C T

We present in this work a unified framework for elliptic variational inequalities that gathers several problems
in contact mechanics like the unilateral contact of one or two membranes or the Signorini problem. We
study a family of Galerkin numerical schemes that discretize this framework. We prove the well-posedness
of the discrete problem and we show that it is equivalent to a saddle-point mixed formulation containing
complementarity constraints. To solve the arising nonlinear problem, we employ a semismooth Newton method
and we prove local convergence properties. The abstract framework is then applied to the discretization of
the unilateral contact between two membranes. We propose to discretize this problem with a finite element
(FEM), a discontinuous Galerkin (dG), and a hybrid high-order (HHO) methods. We also adapt the semismooth
Newton algorithm, including a static condensation procedure for the HHO method. Finally, we run numerical
experiments for the FEM and HHO discretizations and compare their behavior.
. Introduction

In the present study, we are interested in solving numerically a wide
lass of variational inequalities. The abstract framework that we use
an be applied to several problems for instance in contact mechanics,
ee Section 1.2. Our goal is to develop a class of numerical schemes
hat can approximate this abstract framework. Numerical simulations
re then considered for one of the examples given and two numerical
chemes are compared.

.1. Variational inequalities

Let 𝑉 and 𝛬 be two Hilbert spaces equipped respectively with the
calar products (⋅, ⋅)𝑉 and (⋅, ⋅)𝛬. Let 𝑉 be a Hilbert subspace of 𝑉
nd 𝑉 𝑔 ∶= {𝑔} + 𝑉 be an affine subspace of 𝑉 for some element
∈ 𝑉 . As written below, 𝑔 aims at representing Dirichlet boundary

ata. For any Hilbert space 𝑋, its corresponding dual space is denoted
y 𝑋′ and the duality pairing is denoted by ⟨⋅, ⋅⟩𝑋′ ,𝑋 . Let us consider
cone 𝛬 ⊂ 𝛬. This means that there exists 𝛬 ⊂ (𝛬)′ such that 𝛬 =

{

𝜒 ∈ 𝛬 s.t. ⟨𝜇, 𝜒⟩(𝛬)′ ,𝛬 ⩾ 0 ∀𝜇 ∈ 𝛬
}

. The set 𝛬 is clearly a nonempty
closed convex set of 𝛬. Let 𝛷 ∶ 𝑉 → 𝛬 be a continuous linear and
surjective mapping. Let 𝑔 be the closed convex set of 𝑉 𝑔 defined by

𝑔 ∶= {𝑣 ∈ 𝑉 𝑔 s.t. 𝛷(𝑣) − 𝛹 ∈ 𝛬} ,
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E-mail addresses: jad.dabaghi@sorbonne-universite.fr (J. Dabaghi), guillaume.delay@sorbonne-universite.fr (G. Delay).

where 𝛹 is a given element of 𝛬. We further assume that 𝑔 is
nonempty. In practice, this assumption is fulfilled under some compat-
ibility conditions on 𝑔 and 𝛹 (see for instance problems (2) and (3)
below).

Let 𝑎 ∶ 𝑉 ×𝑉 → R be a continuous bilinear form that is coercive on
𝑉 × 𝑉 and 𝓁 ∶ 𝑉 → R be a continuous linear form. We are interested
in the following variational inequality: Find 𝑢 ∈ 𝑔 such that

𝑎(𝑢, 𝑣 − 𝑢) ⩾ 𝓁(𝑣 − 𝑢), ∀𝑣 ∈ 𝑔 . (1)

This problem is well posed as a result of the Lions–Stampacchia theo-
rem, see [1, Theorem 2.1] or [2, Theorem 5.6]. Furthermore, it belongs
to the wide range of variational inequalities of the first kind [3–5] and
can be used to model several contact problems as we see in the next
section.

1.2. Motivations

Let 𝛺 ⊂ R2 be a smooth connected domain. We denote by (⋅, ⋅)𝛺
the 𝐿2-scalar product on 𝛺. Let us now give several applications of the
abstract framework given above.

Obstacle problem: the unknown 𝑢 represents the displacement of
an elastic membrane that cannot penetrate a lower obstacle. We look
for the solution of the following problem:

Find 𝑢 ∈ 𝑔 ∶= {𝑣 ∈ 𝐻1(𝛺) s.t. 𝑣 = 𝑔 on 𝜕𝛺, and 𝛷(𝑣) ∶= 𝑣 ⩾
𝛹 a.e. in 𝛺} such that

(𝛁𝑢,𝛁(𝑣 − 𝑢))𝛺 ⩾ (𝑓, 𝑣 − 𝑢)𝛺 , ∀𝑣 ∈ 𝑔 , (2)
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where 𝛹 ∈ 𝐻1(𝛺) represents the position of the lower obstacle and
𝑔 ∈ 𝐻1∕2(𝜕𝛺) is a Dirichlet boundary datum for 𝑢. They fulfill the
compatibility condition 𝛹 ⩽ 𝑔 on 𝜕𝛺 in order to ensure that 𝑔 is
nonempty. Moreover, 𝑓 ∈ 𝐿2(𝛺) represents a force acting on the
membrane. Note that in this example 𝛷 ∶ 𝑉 ∶= 𝐻1(𝛺) → 𝛬 ∶= 𝐻1(𝛺) is
the identity function and 𝛬 ∶=

{

𝑣 ∈ 𝐻1(𝛺) s.t. 𝑣 ⩾ 0 a.e. in 𝛺
}

. More
details about this model can be found e.g. in [4].

Scalar Signorini problem: the boundary of the domain is parti-
tioned as 𝜕𝛺 = 𝛤1 ∪ 𝛤2 ∪ 𝛤3. Dirichlet boundary conditions, Neumann
boundary conditions and unilateral contact boundary conditions are
respectively imposed on 𝛤1, 𝛤2 and 𝛤3 to the unknown 𝑢 that represents
the position of an elastic membrane. The scalar Signorini problem
reads:

Find 𝑢 ∈ 𝑔 ∶= {𝑣 ∈ 𝐻1(𝛺) s.t. 𝑣 = 𝑔 on 𝛤1, and 𝛷(𝑣) ∶= 𝑣 ⩾
𝛹 a.e. on 𝛤3} such that

(𝛁𝑢,𝛁(𝑣 − 𝑢))𝛺 ⩾ (𝑓, 𝑣 − 𝑢)𝛺 , ∀𝑣 ∈ 𝑔 , (3)

where 𝑔 ∈ 𝐻1∕2(𝛤1), 𝛹 ∈ 𝐻1∕2(𝛤3) and 𝑓 ∈ 𝐿2(𝛺). Here, 𝛷 ∶
𝑉 ∶= 𝐻1(𝛺) → 𝛬 ∶= 𝐻1∕2(𝛤3) is the trace application and 𝛬 ∶=
{

𝑣 ∈ 𝐻1∕2(𝛤3) s.t. 𝑣 ⩾ 0 a.e. on 𝛤3
}

. We refer e.g. to [6] for a study of
such a problem.

Contact between two membranes: two membranes are located
one above the other and cannot penetrate each other. The unknown
𝒖 ∶=

(

𝑢1, 𝑢2
)

is a vector that represents at every point of 𝛺 the position
of the two membranes. The problem reads:

Find 𝒖 ∈ 𝑔 ∶=
{

𝒗 ∶= (𝑣1, 𝑣2) ∈ 𝐻1
𝑔1
(𝛺) ×𝐻1

𝑔2
(𝛺) s.t. 𝛷(𝒗) ∶=

𝑣1 − 𝑣2 ⩾ 0 a.e. in 𝛺
}

such that

2
∑

𝛼=1
𝜇𝛼(𝛁𝑢𝛼 ,𝛁(𝑣𝛼 − 𝑢𝛼))𝛺 ⩾

2
∑

𝛼=1
(𝑓𝛼 , 𝑣𝛼 − 𝑢𝛼)𝛺 , ∀𝒗 ∈ 𝑔 , (4)

where (𝑓1, 𝑓2) ∈ (𝐿2(𝛺))2 represents the surface forces acting on the
two membranes and 𝜇1, 𝜇2 are positive coefficients representing the
tensions of the membranes. Moreover,

(

𝑔1, 𝑔2
)

∈ (𝐻1∕2(𝜕𝛺))2 denotes
the boundary datum for 𝒖 fulfilling 𝑔1 ⩾ 𝑔2. We used the compact
notation 𝐻1

𝑔𝛼
(𝛺) ∶=

{

𝑣 ∈ 𝐻1(𝛺) s.t. 𝑣 = 𝑔𝛼 on 𝜕𝛺
}

for 𝛼 ∈ {1, 2}. Here
𝛷 ∶ 𝑉 ∶= (𝐻1(𝛺))2 → 𝛬 ∶= 𝐻1(𝛺) corresponds at each point of
𝛺 to the signed distance function between the two membranes and
𝛬 ∶=

{

𝑣 ∈ 𝐻1(𝛺) s.t. 𝑣 ⩾ 0 a.e. in 𝛺
}

. For further information about
this problem, the reader can report for instance to [7,8].

Vector Signorini problem: the boundary of the domain is parti-
tioned as 𝜕𝛺 = 𝛤1 ∪ 𝛤2 ∪ 𝛤3. A structure is clamped on 𝛤1 (Dirichlet
boundary conditions), it has a force acting on it on 𝛤2 (Neumann
boundary conditions) and it fulfills a unilateral contact on 𝛤3. The goal
is to find the displacement 𝒖 of the structure knowing the displacement
of the boundary on 𝛤1 and the forces acting on 𝛤2. It reads:

Find 𝒖 ∈ 𝑔 ∶= {𝒗 ∈ (𝐻1(𝛺))2 s.t. 𝒗 = 𝒈 on 𝛤1, and 𝛷(𝒗) ∶= 𝒗 ⋅ 𝐧 ⩽
0 a.e. on 𝛤3} such that

(𝜎(𝒖), 𝜖(𝒗 − 𝒖))𝛺 ⩾ (𝒇 , 𝒗 − 𝒖)𝛺 + (𝒈𝑁 , 𝒗 − 𝒖)𝛤2 , ∀𝒗 ∈ 𝑔 , (5)

where 𝜖(𝒗) ∶= 1
2
(

𝛁𝒗 + 𝛁𝒗𝑇
)

and 𝜎(𝒗) ∶= K𝜖(𝒗) are respectively the
strain and stress tensors associated to the displacement 𝒗 with K the
fourth-order symmetric elasticity tensor. Moreover, 𝒈 ∈ (𝐻1∕2(𝛤1))2 and
𝒈𝑁 ∈ (𝐿2(𝛤2))2 are respectively Dirichlet and Neumann boundary data
and 𝒇 ∈ (𝐿2(𝛺))2 is a volumic force acting on the structure. In this case,
the mapping 𝛷 ∶ 𝑉 ∶= (𝐻1(𝛺))2 → 𝛬 ∶= 𝐻1∕2(𝛤3) is the normal trace
on 𝛤3 and 𝛬 ∶=

{

𝑣 ∈ 𝐻1∕2(𝛤3) s.t. 𝑣 ⩽ 0 a.e. in 𝛤3
}

. Such a problem has
been studied for instance in [9].

Remark 1.1 (Boundary Data). Note that in the previous problems, 𝑔 (or
𝒈) denotes the Dirichlet boundary data while in our abstract setting 𝑔 is
an element of the solution space (in fact we consider a lifting of those
boundary data).
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1.3. Scientific context

The numerical approximation of variational inequalities has been
studied mainly in the context of the obstacle problem (2). Piecewise
affine finite elements have been considered in several works, see [10–
12] for a priori analysis and [13–17] for a posteriori analysis. Discon-
tinuous Galerkin (dG) methods [18–20] and hybrid high-order (HHO)
methods [21] have also been considered to solve the obstacle problem.

The other problems given in Section 1.2 have also been studied.
The scalar Signorini problem has been discretized using e.g. finite
elements [6], finite volumes [22] and the HHO method [23]. The
contact between two membranes has been studied in [7,8,24,25] using
finite elements. The vector Signorini problem (5) has been studied with
the finite element method (FEM) [26,9,27], with the dG method [28],
and with the HHO method [29].

Among these works, piecewise quadratic elements are considered
in [11,12,30,6,20,27,29,21] and arbitrary high order elements are
studied in [26,17,25,23]. The arbitrary high-order method we develop
in the present work is inspired by [25].

Several strategies could be employed to solve the discretized non-
linear problem arising from any of these methods. We mention the
interior point method [31], the active set strategy [32] and the primal–
dual active set strategy [33,34]. In the present work we consider a
semismooth Newton method [35–39].

1.4. Mixed formulation

Let us define the continuous bilinear form 𝑏 ∶ 𝑉 × (𝛬)′ → R by

𝑏(𝑣, 𝜒) ∶= ⟨𝜒,𝛷(𝑣)⟩(𝛬)′ ,𝛬, ∀𝑣 ∈ 𝑉 , ∀𝜒 ∈ (𝛬)′. (6)

e also define the adjoint cone to 𝛬 by

̂ ∶= {𝜒 ∈ (𝛬)′ s.t. ⟨𝜒, 𝜇⟩(𝛬)′ ,𝛬 ⩾ 0 ∀𝜇 ∈ 𝛬}. (7)

e can study the mixed problem: Find (𝑢, 𝜆) ∈ 𝑉 𝑔 × 𝛬 such that

(𝑢, 𝑣) − 𝑏(𝑣, 𝜆) = 𝓁(𝑣), ∀𝑣 ∈ 𝑉 , (8a)

(𝑢, 𝜒 − 𝜆) ⩾ ⟨𝜒 − 𝜆, 𝛹⟩(𝛬)′ ,𝛬, ∀𝜒 ∈ 𝛬. (8b)

ne can view 𝜆 ∈ 𝛬 as a Lagrange multiplier for the constraint
(𝑢) − 𝛹 ∈ 𝛬. It is standard to show that (8) rewrites as the following

ystem of variational equalities with complementarity constraints: Find
𝑢, 𝜆) ∈ 𝑉 𝑔 × 𝛬 such that

(𝑢, 𝑣) − 𝑏(𝑣, 𝜆) = 𝓁(𝑣), ∀𝑣 ∈ 𝑉 , (9a)

(𝑢) − 𝛹 ∈ 𝛬, 𝜆 ∈ 𝛬, ⟨𝜆,𝛷(𝑢) − 𝛹⟩(𝛬)′ ,𝛬 = 0. (9b)

ny solution to (8) is also solution to (1). Note however that the
onverse is not necessarily true in the general case but can be proven
f we consider more regular data (see for instance [7,8] for the contact
etween two membranes).

.5. Outline of the article

This contribution is organized as follows. In Section 2, we propose
discretization of the mixed problem (8) and we prove the well-

osedness of the resulting nonlinear discretized problem. This problem
s then rewritten under an algebraic formulation containing comple-
entarity constraints. In Section 3, we introduce a semismooth Newton
ethod to compute the numerical solution of the underlying nonlinear

lgebraic formulation. We also discuss convergence properties of that
emismooth Newton method. We give in Section 4 several applications
f our abstract framework: we discretize the elliptic contact problem
etween two membranes (4) with several numerical schemes. The
esults of Section 2 thus guarantee the well-posedness of these meth-
ds. In Section 5, we perform numerical simulations for this problem
sing two different schemes (FEM and HHO). Their behavior are then
ompared.
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2. The nonlinear discretized problem

In this section, we mimic the framework of Section 1.1 to give a
discretized variational inequality. We then propose a mixed formula-
tion associated to this variational inequality. Furthermore, we prove
the equivalence of these two problems. We then write the associated
algebraic formulation.

2.1. Discrete variational inequality

In this section, for every space or operator 𝑋 introduced in Sec-
ion 1.1, we denote by 𝑋ℎ its discrete analogue. Let 𝑉ℎ and 𝛬ℎ be two
inite dimensional Hilbert spaces respectively equipped with the scalar
roducts (⋅, ⋅)𝑉ℎ and (⋅, ⋅)𝛬ℎ

. Let 𝑉ℎ and 𝑉ℎ be linear subspaces of 𝑉ℎ such
that 𝑉ℎ = 𝑉ℎ ⊕ 𝑉ℎ and 𝑉 𝑔

ℎ ∶= {𝑔ℎ} + 𝑉ℎ be an affine subspace of 𝑉ℎ
where 𝑔ℎ ∈ 𝑉ℎ. Here the notation ⊕ stands for the direct sum between
the spaces 𝑉ℎ and 𝑉ℎ. The linear mapping 𝛷ℎ ∶ 𝑉ℎ → 𝛬ℎ is assumed to
be surjective. Let 𝛬ℎ ⊂ 𝛬ℎ be a cone, i.e. there exists 𝛬ℎ ⊂ 𝛬ℎ such that
𝛬ℎ = {𝜒ℎ ∈ 𝛬ℎ s.t. (𝜒ℎ, 𝜇ℎ)𝛬ℎ

⩾ 0 ∀𝜇ℎ ∈ 𝛬ℎ}. Moreover we assume
that

𝜒ℎ ∈ 𝛷ℎ(𝑉ℎ) ⟺ (𝜒ℎ ∈ 𝛬ℎ and − 𝜒ℎ ∈ 𝛬ℎ), (10)

Span(𝛬ℎ) = 𝛬ℎ. (11)

Remark 2.1. In the sequel, 𝑉ℎ is the linear space generated by all the
Lagrange basis functions associated to nodes where Dirichlet boundary
conditions are imposed. The assumption (10) then means that the
unilateral constraint is relaxed on the Dirichlet boundary nodes and
that it is relaxed only on those nodes. The solution will still satisfy
the constraints since the Dirichlet conditions are strongly imposed on
the elements of 𝑔

ℎ (see below). The assumption (11) means that the
constraint is always unilateral, i.e. we never impose the elements of 𝛬ℎ
to be 0-valued anywhere.

We define the discrete analogue to 𝑔 by

𝑔
ℎ ∶= {𝑣ℎ ∈ 𝑉 𝑔

ℎ s.t. 𝛷ℎ(𝑣ℎ) − 𝛹ℎ ∈ 𝛬ℎ}. (12)

It is obviously a nonempty closed convex set of 𝑉 𝑔
ℎ where 𝛹ℎ is a given

element of 𝛬ℎ. The bilinear form 𝑎ℎ ∶ 𝑉ℎ × 𝑉ℎ → R is assumed to
be continuous on 𝑉ℎ × 𝑉ℎ and coercive on 𝑉ℎ × 𝑉ℎ. The linear form
𝓁ℎ ∶ 𝑉ℎ → R is continuous.

We consider the following approximation to problem (1): Find 𝑢ℎ ∈
𝑔

ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣ℎ − 𝑢ℎ) ⩾ 𝓁ℎ(𝑣ℎ − 𝑢ℎ), ∀𝑣ℎ ∈ 𝑔
ℎ. (13)

According to the Lions–Stampacchia theorem, the variational inequal-
ity (13) admits a unique solution.

2.2. Discrete mixed problem

Let us write a discrete mixed formulation associated to (13). Let
𝑏ℎ ∶ 𝑉ℎ × 𝛬ℎ → R be the bilinear form defined by

𝑏ℎ(𝑣ℎ, 𝜒ℎ) ∶= (𝛷ℎ(𝑣ℎ), 𝜒ℎ)𝛬ℎ
, ∀𝑣ℎ ∈ 𝑉ℎ, ∀𝜒ℎ ∈ 𝛬ℎ. (14)

We also define the adjoint cone of 𝛬ℎ:

𝛬ℎ ∶= {𝜒ℎ ∈ 𝛬ℎ s.t. (𝜒ℎ, 𝜇ℎ)𝛬ℎ
⩾ 0 ∀𝜇ℎ ∈ 𝛬ℎ}. (15)

This adjoint cone has been used for instance in the numerical discretiza-
tion of the unilateral contact between two membranes with Lagrange
finite elements [24,25] and with discontinuous Galerkin methods [18]
for the obstacle problem. In the sequel, for any set 𝑋ℎ ⊂ 𝛬ℎ, 𝑋⊥

ℎ denotes
its orthogonal space in 𝛬ℎ with respect to the scalar product (⋅, ⋅)𝛬ℎ

.
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Lemma 1. We have the following characterizations for the cones 𝛬ℎ and
𝛬ℎ:

ℎ =
{

𝑣ℎ ∈ 𝛬ℎ s.t. (𝑣ℎ, 𝜇ℎ)𝛬ℎ
⩾ 0 ∀𝜇ℎ ∈ 𝛬ℎ

}

, (16)

ℎ̂ =
{

𝜒ℎ ∈ (𝛷ℎ(𝑉ℎ))⊥ s.t. (𝜇ℎ, 𝜒ℎ)𝛬ℎ
⩾ 0 ∀𝜇ℎ ∈ 𝛬ℎ ∩𝛷ℎ(𝑉ℎ)

}

. (17)

roof. For the proof of these characterizations, the reader can report
o Section 2.3. They are a consequence of (25)–(26). □

We propose the following discretization to the mixed problem (8):
ind (𝑢ℎ, 𝜆ℎ) ∈ 𝑉 𝑔

ℎ × 𝛬ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣ℎ) − 𝑏ℎ(𝑣ℎ, 𝜆ℎ) = 𝓁ℎ(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (18a)

ℎ(𝑢ℎ, 𝜒ℎ − 𝜆ℎ) ⩾ (𝛹ℎ, 𝜒ℎ − 𝜆ℎ)𝛬ℎ
, ∀𝜒ℎ ∈ 𝛬ℎ. (18b)

We now show that the discrete variational inequality (13) is equiv-
lent to the discrete mixed problem (18).

heorem 2. If 𝑢ℎ ∈ 𝑔
ℎ is the solution to (13) then there exists a unique

ℎ ∈ 𝛬ℎ such that (𝑢ℎ, 𝜆ℎ) is a solution to (18); conversely if (𝑢ℎ, 𝜆ℎ) is a
olution to (18) then 𝑢ℎ ∈ 𝑔

ℎ and 𝑢ℎ is the unique solution to (13).

orollary 3. Problem (18) is well-posed.

roof of Theorem 2. Let (𝑢ℎ, 𝜆ℎ) ∈ 𝑉 𝑔
ℎ × 𝛬ℎ be a solution to (18).

ccording to the definition of 𝛬ℎ, for all 𝜒ℎ ∈ 𝛬ℎ we have 𝜆ℎ+𝜒ℎ ∈ 𝛬ℎ.
e then test (18b) with 𝜆ℎ + 𝜒ℎ and get ∀𝜒ℎ ∈ 𝛬ℎ, 𝑏ℎ(𝑢ℎ, 𝜒ℎ) ⩾

𝛹ℎ, 𝜒ℎ)𝛬ℎ
, which implies 𝑢ℎ ∈ 𝑔

ℎ by virtue of (16). Furthermore,
esting equation (18b) with 𝜒ℎ = 0 ∈ 𝛬ℎ gives −𝑏ℎ(𝑢ℎ, 𝜆ℎ) ⩾ −(𝛹ℎ, 𝜆ℎ)𝛬ℎ
nd since 𝜆ℎ ∈ 𝛬ℎ, for all 𝑣ℎ ∈ 𝑔

ℎ, we have as a result of (16),
ℎ(𝑣ℎ, 𝜆ℎ) ⩾ (𝛹ℎ, 𝜆ℎ)𝛬ℎ

. Then, ∀𝑣ℎ ∈ 𝑔
ℎ, 𝑏ℎ(𝑣ℎ−𝑢ℎ, 𝜆ℎ) ⩾ 0. Testing (18a)

ith 𝑣ℎ − 𝑢ℎ ∈ 𝑉ℎ we get

ℎ(𝑢ℎ, 𝑣ℎ − 𝑢ℎ) − 𝓁ℎ(𝑣ℎ − 𝑢ℎ) = 𝑏ℎ(𝑣ℎ − 𝑢ℎ, 𝜆ℎ) ⩾ 0, ∀𝑣ℎ ∈ 𝑔
ℎ,

hich shows that 𝑢ℎ is the solution to (13).
Conversely, if 𝑢ℎ ∈ 𝑔

ℎ is the solution to (13), we uniquely define
ℎ ∈ 𝑉ℎ such that

𝐴ℎ, 𝑧ℎ)𝑉ℎ = −𝓁ℎ(𝑧ℎ) + 𝑎ℎ(𝑢ℎ, 𝑧ℎ), ∀𝑧ℎ ∈ 𝑉ℎ. (19)

hen, ∀𝑣ℎ ∈ 𝑔
ℎ, 𝑢ℎ − 𝑣ℎ ∈ 𝑉ℎ and we have

𝐴ℎ, 𝑢ℎ − 𝑣ℎ)𝑉ℎ = −𝓁ℎ(𝑢ℎ − 𝑣ℎ) + 𝑎ℎ(𝑢ℎ, 𝑢ℎ − 𝑣ℎ) ⩽ 0, ∀𝑣ℎ ∈ 𝑔
ℎ. (20)

et us define the mapping 𝛷̃ℎ ∶ 𝑉ℎ → 𝛷ℎ(𝑉ℎ) ⊂ 𝛬ℎ such that for all 𝑣ℎ ∈
ℎ, 𝛷̃ℎ(𝑣ℎ) ∶= 𝛷ℎ(𝑣ℎ). We also define 𝛷̃∗

ℎ ∶ (𝛷ℎ(𝑉ℎ))⊥ → 𝑉 ⊥
ℎ such that

or all 𝑣ℎ ∈ 𝑉ℎ and all 𝑤ℎ ∈ (𝛷ℎ(𝑉ℎ))⊥, (𝑣ℎ, 𝛷̃∗
ℎ(𝑤ℎ))𝛬ℎ

∶= (𝛷̃ℎ(𝑣ℎ), 𝑤ℎ)𝛬ℎ
.

e can prove that Ker(𝛷̃ℎ)⊥ = 𝑉 ⊥
ℎ + Im(𝛷̃∗

ℎ).
Now, for every 𝜒ℎ ∈ Ker(𝛷̃ℎ) ⊂ 𝑉ℎ, we can test (20) with 𝑣ℎ =

ℎ ±𝜒ℎ ∈ 𝑔
ℎ and we get for every 𝜒ℎ ∈ Ker(𝛷̃ℎ), (𝐴ℎ, 𝜒ℎ)𝑉ℎ = 0. Hence,

ℎ ∈ Ker(𝛷̃ℎ)⊥ = Im(𝛷̃∗
ℎ) + 𝑉 ⊥

ℎ . Then, there exist 𝜆ℎ ∈ 𝛷ℎ(𝑉ℎ)⊥ ⊂ 𝛬ℎ
nd 𝑣̂ℎ ∈ 𝑉 ⊥

ℎ such that 𝐴ℎ = 𝛷̃∗
ℎ(𝜆ℎ) + 𝑣̂ℎ. Considering Eq. (19) we then

ave

ℎ(𝑢ℎ, 𝑧ℎ) − 𝓁ℎ(𝑧ℎ) = (𝛷̃∗
ℎ(𝜆ℎ), 𝑧ℎ)𝑉ℎ = 𝑏ℎ(𝑧ℎ, 𝜆ℎ), ∀𝑧ℎ ∈ 𝑉ℎ.

hen (𝑢ℎ, 𝜆ℎ) satisfies (18a) and according to (13), we have

ℎ(𝑣ℎ − 𝑢ℎ, 𝜆ℎ) ⩾ 0, ∀𝑣ℎ ∈ 𝑔
ℎ. (21)

t remains to show that 𝜆ℎ ∈ 𝛬ℎ and that (18b) is valid. For all 𝜇ℎ ∈
ℎ ∩𝛷ℎ(𝑉ℎ), ∃𝑣𝜇 ∈ 𝑉ℎ such that 𝛷ℎ(𝑣𝜇) ∶= 𝜇ℎ. Next, 𝛷ℎ(𝑢ℎ + 𝑣𝜇) −𝛹ℎ =
𝛷ℎ(𝑢ℎ) − 𝛹ℎ) + 𝜇ℎ ∈ 𝛬ℎ and then 𝑢ℎ + 𝑣𝜇 ∈ 𝑔

ℎ. Besides, testing (21)
ith 𝑣ℎ = 𝑢ℎ + 𝑣𝜇 we get ∀𝜇ℎ ∈ 𝛬ℎ ∩ 𝛷ℎ(𝑉ℎ), (𝜇ℎ, 𝜆ℎ)𝛬ℎ

⩾ 0 and thus
ith (17) it yields 𝜆ℎ ∈ 𝛬ℎ.

In a similar way, there exist 𝑣𝛹 ∈ 𝑉ℎ and 𝛹̂ℎ ∈ 𝛷ℎ(𝑉ℎ) such that
(𝑣 ) + 𝛹̂ ∶= 𝛹 . And since 𝛷 (𝑣 + 𝑔 ) − 𝛹 = −𝛹̂ + 𝛷 (𝑔 ) ∈
ℎ 𝛹 ℎ ℎ ℎ 𝛹 ℎ ℎ ℎ ℎ ℎ
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𝛷ℎ(𝑉ℎ) ⊂ 𝛬ℎ by assumption (10), we then have 𝑣𝛹 + 𝑔ℎ ∈ 𝑔
ℎ. We test

(21) with 𝑣ℎ = 𝑣𝛹 + 𝑔ℎ and get 𝑏ℎ(𝑔ℎ − 𝑢ℎ, 𝜆ℎ) ⩾ −(𝛹ℎ − 𝛹̂ℎ, 𝜆ℎ)𝛬ℎ
. Since

𝜆ℎ ∈ (𝛷ℎ(𝑉ℎ))⊥, we have

𝑏ℎ(−𝑢ℎ, 𝜆ℎ) ⩾ −(𝛹ℎ, 𝜆ℎ)𝛬ℎ
. (22)

Then, since 𝑢ℎ ∈ 𝑔
ℎ, the definition (15) yields

𝑏ℎ(𝑢ℎ, 𝜒ℎ) ⩾ (𝛹ℎ, 𝜒ℎ)𝛬ℎ
, ∀𝜒ℎ ∈ 𝛬ℎ. (23)

Combining (22) and (23) we get (18b). Hence, (𝑢ℎ, 𝜆ℎ) is solution
to (18).

We have proved the equivalence between the two problems. Let us
now prove that 𝜆ℎ is unique. Assume that (𝑢ℎ, 𝜆ℎ) and (𝑢ℎ, 𝜇ℎ) are two
solutions to (18). Then (18a) gives 0 = 𝑏ℎ(𝑣ℎ, 𝜆ℎ − 𝜇ℎ) = (𝑣ℎ, 𝛷∗

ℎ(𝜆ℎ −
𝜇ℎ))𝑉ℎ for all 𝑣ℎ ∈ 𝑉ℎ, where 𝛷∗

ℎ is the adjoint of 𝛷ℎ. Moreover,
according to (17), 𝑏ℎ(𝑣ℎ, 𝜆ℎ−𝜇ℎ) = 0 for all 𝑣ℎ ∈ 𝑉ℎ. Then, 𝛷∗

ℎ(𝜆ℎ−𝜇ℎ) =
0.

Now, as Im(𝛷ℎ) = 𝛬ℎ, Ker(𝛷∗
ℎ) = Im(𝛷ℎ)⊥ = {0}, 𝛷∗

ℎ is invertible
and 𝜆ℎ = 𝜇ℎ. □

Remark 2.2 (Consistency). In the present work we do not study the
consistency of the scheme. This study is difficult to make in our general
framework. Moreover, as we will see in Section 4, the discrete cones are
nonconforming to the continuous ones (even for finite elements). This
makes the consistency analysis even harder. The consistency will then
be studied numerically only through the convergence of the schemes
(see Section 5).

We observe that (18b) is equivalent to 𝛷ℎ(𝑢ℎ) − 𝛹ℎ ∈ 𝛬ℎ and
(

𝛷ℎ(𝑢ℎ) − 𝛹ℎ, 𝜆ℎ
)

𝛬ℎ
= 0. This can be proven by evaluating (18b) with

𝜒ℎ = 𝜆ℎ + 𝜇ℎ (∀𝜇ℎ ∈ 𝛬ℎ), 𝜒ℎ = 2𝜆ℎ and 𝜒ℎ = 0 and using Lemma 1.
Therefore, system (18) rewrites as the following system of discrete

equations with complementarity constraints: Find (𝑢ℎ, 𝜆ℎ) ∈ 𝑉 𝑔
ℎ × 𝛬ℎ

such that

𝑎ℎ(𝑢ℎ, 𝑣ℎ) − 𝑏ℎ(𝑣ℎ, 𝜆ℎ) = 𝓁ℎ(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (24a)

𝛷ℎ(𝑢ℎ) − 𝛹ℎ ∈ 𝛬ℎ, 𝜆ℎ ∈ 𝛬ℎ,
(

𝛷ℎ(𝑢ℎ) − 𝛹ℎ, 𝜆ℎ
)

𝛬ℎ
= 0. (24b)

2.3. Algebraic formulation

In this section, we rewrite system (24) under an algebraic formula-
tion. For this purpose, we construct a basis

(

𝛤𝑙
)

1⩽𝑙⩽𝑚♭ of 𝛬ℎ such that
𝛬ℎ can be written as

𝛬ℎ =

⎧

⎪

⎨

⎪

⎩

∑

1⩽𝑖⩽𝑚⋆
𝑎𝑖𝛤𝑖 +

∑

𝑚⋆<𝑖⩽𝑚♭

𝑏𝑖𝛤𝑖 s.t. ∀𝑖 ∈ [1, 𝑚⋆], 𝑎𝑖 ⩾ 0 and

∀𝑖 ∈ [𝑚⋆ + 1, 𝑚♭], 𝑏𝑖 ∈ R
⎫

⎪

⎬

⎪

⎭

,

(25)

where 𝑚⋆ ∶= dim(𝛷ℎ(𝑉ℎ)) and 𝑚♭ ∶= dim(𝛬ℎ).
Let us now comment on why such a basis exists. Let (𝛤𝑙)𝑚⋆<𝑙⩽𝑚♭

be a basis of 𝛷ℎ(𝑉ℎ). According to assumption (10), all these vectors
belong to 𝛬ℎ. Moreover, as a consequence of (11), there exists a family
(𝛾𝑙)1⩽𝑙⩽𝑚⋆ of vectors of 𝛬ℎ such that ((𝛾𝑙)1⩽𝑙⩽𝑚⋆ , (𝛤𝑙)𝑚⋆<𝑙⩽𝑚♭ ) is a basis of
𝛬ℎ. For all 1 ⩽ 𝑙 ⩽ 𝑚⋆, 𝛾𝑙 = 𝛾̃𝑙 + 𝛾̂𝑙 where 𝛾̂𝑙 ∈ 𝛷ℎ(𝑉ℎ) and 𝛾̃𝑙 ∈ 𝛷ℎ(𝑉ℎ)
and we set 𝛤𝑙 ∶= 𝛾̃𝑙. The family (𝛤𝑙)1⩽𝑙⩽𝑚⋆ is then a basis of 𝛷ℎ(𝑉ℎ) and
(𝛤𝑙)1⩽𝑙⩽𝑚♭ is a basis of 𝛬ℎ. Moreover, the identity (25) is a consequence
of assumptions (10)–(11) and the way we constructed the family.

Let
(

𝜉𝑙
)

1⩽𝑙⩽𝑚♭ be the dual basis of
(

𝛤𝑙
)

1⩽𝑙⩽𝑚♭ , i.e. we have (𝜉𝑖, 𝛤𝑗 )𝛬ℎ
∶= 𝛿𝑖𝑗 where 𝛿𝑖𝑗 is the Kronecker delta. We can then prove that

𝛬ℎ =

{

∑

𝑎𝑖𝜉𝑖 s.t. ∀𝑖 ∈ [1, 𝑚⋆], 𝑎𝑖 ⩾ 0

}

. (26)

1⩽𝑖⩽𝑚⋆ a

65
Now let (𝜙𝑙)1⩽𝑙⩽𝑚# be a basis of 𝑉ℎ. We decompose 𝑢ℎ = 𝑢0ℎ+𝑔ℎ (with
𝑔ℎ ∈ 𝑉ℎ) and we denote by 𝑿1ℎ ∈ R𝑚# the vector of the components
of 𝑢0ℎ in the basis

(

𝜙𝑙
)

1⩽𝑙⩽𝑚# . We also denote by 𝑿3ℎ ∈ R𝑚⋆ the vector
of the components of 𝜆ℎ in the family

(

𝜉𝑙
)

1⩽𝑙⩽𝑚⋆ (see (26)). We use the
compact notation 𝑿ℎ ∶=

[

𝑿1ℎ,𝑿3ℎ
]

∈ R𝑚#+𝑚⋆ . The vector 𝛹ℎ ∈ 𝛬ℎ can
be decomposed as 𝛹ℎ = 𝛹̃ℎ+ 𝛹̂ℎ with 𝛹̃ℎ ∈ 𝛷ℎ(𝑉ℎ) and 𝛹̂ℎ ∈ 𝛷ℎ(𝑉ℎ). We
denote by 𝜳ℎ ∈ R𝑚⋆ the vector of the components of 𝛹̃ℎ in the basis
(

𝛤𝑙
)

1⩽𝑙⩽𝑚⋆ . The problem (24) reads: Find 𝑿ℎ ∶=
[

𝑿1ℎ,𝑿3ℎ
]

∈ R𝑚#+𝑚⋆

such that

E𝑿ℎ = 𝑭 , (27a)

B𝑇𝑿1ℎ − 𝜳ℎ ⩾ 0, 𝑿3ℎ ⩾ 0,
(

B𝑇𝑿1ℎ − 𝜳ℎ
)

⋅𝑿3ℎ = 0. (27b)

Here, E ∈ R𝑚# ,𝑚#+𝑚⋆ is a rectangular block matrix having the following
structure

E ∶= [ A − B ] ,

where the matrices A ∈ R𝑚# ,𝑚# and B ∈ R𝑚# ,𝑚⋆ are defined by

A𝑙,𝑘 ∶= 𝑎ℎ(𝜙𝑘, 𝜙𝑙), B𝑘,𝑗 ∶= 𝑏ℎ(𝜙𝑘, 𝜉𝑗 ), ∀1 ⩽ 𝑗 ⩽ 𝑚⋆, ∀1 ⩽ 𝑙, 𝑘 ⩽ 𝑚#.

(28)

The right-hand side vector 𝑭 ∈ R𝑚# is defined by

𝑭 𝑘 ∶= 𝓁ℎ(𝜙𝑘) − 𝑎ℎ(𝑔ℎ, 𝜙𝑘), ∀1 ⩽ 𝑘 ⩽ 𝑚#.

Note that (27b) is a consequence of (24b), (25) and (26).

3. Semismooth Newton method

In the present work, we consider a semismooth Newton algorithm
to solve the nonlinear problem (27). We first present the method and
then prove local convergence properties.

3.1. Presentation of the semismooth Newton method

Let us recall the definition of the class of complementarity functions
(or C-functions).

Definition 4. We say that a function 𝑓 ∶ R𝑚 × R𝑚 → R𝑚, 𝑚 ⩾ 1 is a
𝐶-function if

∀(𝐱, 𝐲) ∈ R𝑚 × R𝑚, 𝑓 (𝐱, 𝐲) = 0 ⟺ 𝐱 ⩾ 0, 𝐲 ⩾ 0, 𝐱 ⋅ 𝐲 = 0. (29)

Possible C-functions are the min and the Fischer–Burmeister func-
tions given by

(min (𝐱, 𝐲))𝑙 ∶= min
(

𝐱𝑙 , 𝐲𝑙
)

, and
(

𝑓FB (𝐱, 𝐲)
)

𝑙 ∶=
√

𝐱2𝑙 + 𝐲2𝑙 −
(

𝐱𝑙 + 𝐲𝑙
)

, 𝑙 ∈ [1, 𝑚] ,
(30)

ee also [36,37,40] and the references therein for further information
bout C-functions. Note that the min function is not differentiable for
= 𝐲 and the 𝑓FB function is not differentiable in (𝟎, 𝟎). Such 𝐶-

unctions are used to transform (27b) into algebraic equalities. Let 𝐶̃
e any C-function, we can then use Definition 4 to write

𝐶̃(B𝑇𝑿1ℎ − 𝜳ℎ,𝑿3ℎ) = 0

⟺ B𝑇𝑿1ℎ − 𝜳ℎ ⩾ 0, 𝑿3ℎ ⩾ 0, and
(

B𝑇𝑿1ℎ − 𝜳ℎ
)

⋅𝑿3ℎ = 0.

e introduce the function 𝐶 ∶ R𝑚⋆+𝑚#
→ R𝑚⋆ defined by 𝐶(𝑿ℎ) ∶=

̃(B𝑇𝑿1ℎ − 𝜳ℎ,𝑿3ℎ). Problem (27) can then be equivalently rewritten
s: Find 𝑿ℎ ∶=

[

𝑿1ℎ,𝑿3ℎ
]

∈ R𝑚#+𝑚⋆ such that

E𝑿ℎ = 𝑭 ,

𝐶(𝑿ℎ) = 𝟎.
(31)

Note that since 𝐶̃ is not necessarily Fréchet differentiable at every
oint, we cannot use the standard results concerning the Newton
lgorithm. However, the weaker regularity of the C-functions that are
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locally Lipschitz can be still enough to prove convergence properties
for the semismooth Newton algorithm (see Section 3.2). The proof is
similar to the one of the convergence of the classical Newton method
but with the Clarke subdifferential (or generalized Jacobian of 𝐶)
instead of its classical Jacobian. In particular, when all the elements
of the Clarke subdifferential are invertible, the Clarke subdifferential is
said to be regular [37, Chapter 7]. The semismooth Newton algorithm
is given in Algorithm 1. We denote by ‖ ⋅ ‖2 the 𝓁2-norm, i.e. ∀𝑚 ∈ N∗,

∀𝑿 ∈ R𝑚, ‖𝑿‖

2
2 ∶=

𝑚
∑

𝑙=1
(𝑿𝑙)2.

Algorithm 1 Semismooth Newton algorithm

1. Choose an initial vector 𝑿0
ℎ ∈ R𝑚⋆+𝑚# and set 𝑘 = 1. Let 𝜀lin > 0

be a fixed (small) parameter.

while
‖

‖

‖

‖

‖

(

𝑭 − E𝑿𝑘−1
ℎ

𝐶(𝑿𝑘−1
ℎ )

)

‖

‖

‖

‖

‖2
⩾ 𝜀lin

‖

‖

‖

‖

‖

(

𝑭 − E𝑿0
ℎ

𝐶(𝑿0
ℎ)

)

‖

‖

‖

‖

‖2
do

2. For 𝑘 ⩾ 1, 𝑿𝑘−1
ℎ is given. Compute the Jacobian matrix ‘‘in

the sense of Clarke’’ J𝑘−1 ∈ R𝑚⋆+𝑚# ,𝑚⋆+𝑚# and the right-hand side
vector 𝑩𝑘−1 ∈ R𝑚⋆+𝑚# respectively by

J𝑘−1 ∶=
[

E
𝐉𝐂(𝑿𝑘−1

ℎ )

]

, 𝑩𝑘−1 ∶=
[

𝑭
𝐉𝐂(𝑿𝑘−1

ℎ )𝑿𝑘−1
ℎ − 𝐶(𝑿𝑘−1

ℎ )

]

.

(32)

Here, 𝐉𝐂 is the generalized Jacobian of 𝐶.
3. Find 𝑿𝑘

ℎ ∈ R𝑚#+𝑚⋆ as the solution of the linear system

J𝑘−1𝑿𝑘
ℎ = 𝑩𝑘−1. (33)

end while

3.2. The case of the min function: convergence properties

In this section, the C-function considered is the min function given
in (30). The Clarke subdifferential 𝐉𝐂(𝑿) of 𝐶 at point 𝑿 ∶=

[

𝑿1,𝑿3
]𝑇

an be computed in the following way. First, we construct the following
lock matrices K ∶=

[

B𝑇 , 𝟎
]

∈ R𝑚⋆ ,𝑚⋆+𝑚# and G ∶=
[

𝟎, Id
]

∈ R𝑚⋆ ,𝑚⋆+𝑚# ,
here Id denotes the identity matrix. Then, the 𝑙th row of the Jacobian
atrix 𝐉𝐂(𝑿) is either given by the 𝑙th row of K if

(

B𝑇𝑿1 − 𝜳ℎ
)

𝑙 ⩽
𝑿3

)

𝑙 or the 𝑙th row of G if
(

𝑿3
)

𝑙 <
(

B𝑇𝑿1 − 𝜳ℎ
)

𝑙 for 1 ⩽ 𝑙 ⩽ 𝑚⋆. We
rovide in this section a local convergence result for the semismooth
ewton Algorithm (Algorithm 1) when the C-function min is employed.

heorem 5. Let 𝐶̃ be the C-function min defined in (30). Then Algorithm 1
s well defined. Moreover, if the first guess 𝑿0

ℎ is close enough to the solution
∗
ℎ to the nonlinear system (31), then the sequence

(

𝑿𝑘
ℎ
)

𝑘⩾1 converges to
∗
ℎ with a finite number of semismooth iterations and the local convergence

s quadratic.

roof. Let us first prove that there exists a unique solution to (32)–(33)
or every 𝑿𝑘−1

ℎ ∈ R𝑚#+𝑚⋆ given. Since it is a finite dimensional square
ystem, existence of a solution for every right-hand side is equivalent
o uniqueness of this solution. Let

∶=
{

𝑖 ∈
[

1, 𝑚⋆] s.t.
(

B𝑇𝑿𝑘−1
1ℎ − 𝜳ℎ

)

𝑖 ⩽
(

𝑿𝑘−1
3ℎ

)

𝑖

}

,

and 𝑐 its complementarity set in [1, 𝑚⋆].
Let 𝑿 ∶=

[

𝑿1,𝑿3
]

∈ R𝑚#+𝑚⋆ be the solution to the problem (33)
with no right-hand side, i.e.

A𝑿1 − B𝑿3 = 0,

𝐉𝐂(𝑿𝑘−1
ℎ )𝑿 = 0.

(34)

We want to prove that 𝑿 = 0. The relation 𝐉𝐂(𝑿𝑘−1
ℎ )𝑿 = 0 implies that

𝑇 𝑐
∀𝑖 ∈ , (B 𝑿1)𝑖 = 0 and ∀𝑗 ∈  , (𝑿3)𝑗 = 0 (see the construction of 𝐉𝐂 i
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at the beginning of Section 3.2). Then we have

𝑿𝑇
3 B

𝑇𝑿1 =
∑

𝑖∈

(

𝑿3
)

𝑖
(

B𝑇𝑿1
)

𝑖 +
∑

𝑗∈𝑐

(

𝑿3
)

𝑗
(

B𝑇𝑿1
)

𝑗 = 0. (35)

ultiplying the first line of (34) by 𝑿𝑇
1 and employing (35) we obtain

𝑇
1 A𝑿1 = 0. Since 𝑎ℎ is coercive on 𝑉ℎ × 𝑉ℎ, the matrix A is positive

efinite and then we have 𝑿1 = 0.
Let us set 𝜆̃ℎ ∶=

∑

1⩽𝑖⩽𝑚⋆ (𝑋3)𝑖𝜉𝑖 ∈ 𝛬ℎ the function associated to
3. Moreover, (B𝑿3)𝑗 = (𝜆̃ℎ, 𝛷ℎ(𝜙𝑗 ))𝛬ℎ

and since (𝛤𝑖)1⩽𝑖⩽𝑚⋆ is a basis of
ℎ(𝑉ℎ), for all 𝑖 ∈ [1, 𝑚⋆], there exists 𝑣𝛤𝑖 ∈ 𝑉ℎ such that 𝛷ℎ(𝑣𝛤𝑖 ) ∶=
𝑖. Then B𝑿3 = 0 implies that ∀𝑖 ∈ [1, 𝑚⋆], 0 = (𝜆̃ℎ, 𝛷ℎ(𝑣𝛤𝑖 ))𝛬ℎ

=
𝜆̃ℎ, 𝛤𝑖)𝛬ℎ

= (𝑋3)𝑖. Then 𝑿3 = 0.
This proves that all Jacobian matrices of the Clarke subdifferential

re invertible and thus the latter is regular. Moreover, Algorithm 1 is
ell defined at every step.

Furthermore, since the C-function min is Lipschitz around 𝑿𝑘−1
ℎ ∈

𝑚#+𝑚⋆ , there exists 𝐾 > 0 such that (see [37, Lemma 7.5.2])

sup
𝑿∈R𝑚#+𝑚⋆

max
{

|

|

‖

‖

𝐉𝐂(𝑿)‖
‖

|

|

, ||
|

‖

‖

‖

[

𝐉𝐂(𝑿)
]−1‖

‖

‖

|

|

|

}

⩽ 𝐾, (36)

here |‖⋅‖| stands for the usual matrix norm: for any matrix H ∈
𝑚⋆ ,𝑚⋆+𝑚# ,

‖H‖| = sup
𝒀 ∈R𝑚⋆+𝑚# , 𝒀 ≠𝟎

‖H𝒀 ‖2
‖𝒀 ‖2

.

We now prove the local quadratic convergence of the algorithm.
Solving (33) is equivalent to computing 𝑿𝑘

ℎ ∶= 𝑿𝑘−1
ℎ + 𝑫𝑘

ℎ where
𝑫𝑘

ℎ ∶=
[

𝑫𝑘
1ℎ,𝑫

𝑘
3ℎ
]

∈ R𝑚#+𝑚⋆ is the solution to the problem

J𝑘−1𝑫𝑘
ℎ = −

(

E𝑿𝑘−1
ℎ − 𝑭

𝐶(𝑿𝑘−1
ℎ )

)

.

We denote by 𝑿∗
ℎ the solution to the nonlinear system (27). Ac-

cording to (33), for 𝑘 ⩾ 1, we have E𝑿𝑘
ℎ = 𝑭 . We then have for all

𝑘 ⩾ 2

𝑿𝑘
ℎ −𝑿∗

ℎ = 𝑿𝑘−1
ℎ −𝑿∗

ℎ −
[

J𝑘−1
]−1

(

0
𝐶(𝑿𝑘−1

ℎ )

)

= −
[

J𝑘−1
]−1

[(

0
𝐶(𝑿𝑘−1

ℎ ) − 𝐶(𝑿∗
ℎ)

)

− J𝑘−1
(

𝑿𝑘−1
ℎ −𝑿∗

ℎ
)

]

.

(37)

ince the min function is strongly semismooth [37, Definition 7.4.2],
hen 𝑿𝑘−1

ℎ is close enough to 𝑿∗
ℎ, we have

‖

‖

‖

𝐶(𝑿𝑘−1
ℎ ) − 𝐶(𝑿∗

ℎ) − 𝐉𝐂(𝑿𝑘−1
ℎ )(𝑿𝑘−1

ℎ −𝑿∗
ℎ)
‖

‖

‖2
⩽ 𝐾 ‖

‖

‖

𝑿𝑘−1
ℎ −𝑿∗

ℎ
‖

‖

‖

2

2
, (38)

here 𝐾 > 0 is given in (36). Observe that for 𝑘 ⩾ 2

𝑘−1 (𝑿𝑘−1
ℎ −𝑿∗

ℎ
)

=
(

0
𝐉𝐂(𝑿𝑘−1

ℎ )(𝑿𝑘−1
ℎ −𝑿∗

ℎ)

)

.

sing (37), (36) and (38) we get
‖

‖

‖

𝑿𝑘
ℎ −𝑿∗

ℎ
‖

‖

‖2

⩽ |

|

|

‖

‖

‖

[

𝐉𝐂(𝑿𝑘−1
ℎ )

]−1
‖

‖

‖

|

|

|

‖

‖

‖

𝐶(𝑿𝑘−1
ℎ ) − 𝐶(𝑿∗

ℎ) − 𝐉𝐂(𝑿𝑘−1
ℎ )(𝑿𝑘−1

ℎ −𝑿∗
ℎ)
‖

‖

‖2

⩽ 𝐾2 ‖
‖

‖

𝑿𝑘−1
ℎ −𝑿∗

ℎ
‖

‖

‖

2

2
,

nd we get quadratic convergence.
We end this proof by recalling that there is only a finite set of

ossible matrices for J. Then if the algorithm converges, it does in a
inite number of steps. □

.3. Inexact resolution of the linear algebraic system

Solving (33) with a direct method can be expensive. An alternative
s to employ an inexact Newton algorithm (see [41–43]) which is a
opular approach to speed up the convergence. Suppose thus that some

terative algebraic solver is applied to the linearized system (33). Given
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p

b

p

n
c



an initial vector 𝑿𝑘,0
ℎ ∈ R𝑚#+𝑚⋆ , often taken as 𝑿𝑘,0

ℎ ∶= 𝑿𝑘−1
ℎ , this yields

on step 𝑖 ⩾ 1 an approximation 𝑿𝑘,𝑖
ℎ to 𝑿𝑘

ℎ satisfying

J𝑘−1𝑿𝑘,𝑖
ℎ = 𝑩𝑘−1 −𝑹𝑘,𝑖

ℎ , (39)

where 𝑹𝑘,𝑖
ℎ ∶= 𝑩𝑘−1−J𝑘−1𝑿𝑘,𝑖

ℎ ∈ R𝑚#+𝑚⋆ is the algebraic residual vector.
The algebraic solver can be stopped when the relative algebraic residual
satisfies
‖

‖

‖

𝑹𝑘,𝑖
ℎ
‖

‖

‖2
⩽ 𝜂𝑘 ×

‖

‖

‖

𝑩𝑘−1 − J𝑘−1𝑿𝑘,0
ℎ

‖

‖

‖2
. (40)

Here, 𝜂𝑘 is called the ‘‘forcing term’’. We refer to [44] for more details.

4. Application to the discretization of the contact problem be-
tween two membranes

In this section, we discretize the contact problem between two
membranes, see (4). Several schemes fulfilling the framework of Sec-
tions 2–3 are provided. We first present the continuous problem and
then we give the discretization of this problem with FEM, dG and HHO.
Finally, a static condensation procedure is proposed to speed up the
resolution with the HHO method.

4.1. Continuous setting

In this section, we introduce the continuous problem and the associ-
ated unknowns and functional spaces. We are interested in solving the
problem (4) with the method developed in Sections 2–3. Let 𝛺 ⊂ R2 be
a polygonal domain. The unknowns are the displacements 𝒖 ∶= (𝑢1, 𝑢2)
of two membranes that cannot penetrate each other and the force
acting from the lower membrane onto the upper one represented by
the Lagrange multiplier 𝜆. We denote by 𝜇1 > 0 and 𝜇2 > 0 the tension
of the membranes and

(

𝑓1, 𝑓2
)

∈
(

𝐿2(𝛺)
)2 represents the surface forces

acting on them. The system of PDE’s modeling the contact between
these two membranes is the following:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝜇1𝛥𝑢1 − 𝜆 = 𝑓1 in 𝛺,
−𝜇2𝛥𝑢2 + 𝜆 = 𝑓2 in 𝛺,
𝑢1 − 𝑢2 ⩾ 0, 𝜆 ⩾ 0, (𝑢1 − 𝑢2)𝜆 = 0 in 𝛺,
𝑢1 = 𝑔1, 𝑢2 = 𝑔2 on 𝜕𝛺,

(41)

where 𝑔1 and 𝑔2 are Dirichlet boundary data fulfilling 𝑔1 ⩾ 𝑔2 on 𝜕𝛺.

4.2. Weak formulation

The problem (41) is equivalent to (1) with 𝑔 ∶= {𝒗 ∶=
(

𝑣1, 𝑣2
)

∈
𝐻1

𝑔1
(𝛺) × 𝐻1

𝑔2
(𝛺) s.t. 𝑣1 − 𝑣2 ⩾ 0 a.e in 𝛺} where 𝐻1

𝑔𝛼
(𝛺) ∶= {𝑣 ∈

𝐻1(𝛺) s.t. 𝑣|𝜕𝛺 = 𝑔𝛼} and with the bilinear and linear forms defined
by

𝑎(𝒗,𝒘) ∶=
2
∑

𝛼=1
𝜇𝛼(𝛁𝑣𝛼 ,𝛁𝑤𝛼)𝛺 , 𝓁(𝒘) ∶=

2
∑

𝛼=1
(𝑓𝛼 , 𝑤𝛼)𝛺 , ∀𝒗,𝒘 ∈ (𝐻1(𝛺))2.

As presented in Section 2, we are interested in discretizing the mixed
problem (8) with 𝑉 ∶= (𝐻1

0 (𝛺))2, 𝑉 𝑔 ∶= 𝐻1
𝑔1
(𝛺) ×𝐻1

𝑔2
(𝛺), 𝛬 ∶= 𝐻1(𝛺),

𝛬 ∶= {𝜒 ∈ 𝐻1(𝛺) s.t. 𝜒 ⩾ 0 a.e. in 𝛺}, 𝛬 defined by (7) and 𝛹 ∶= 0.
Moreover, the bilinear form 𝑏 is defined by

𝑏(𝒗, 𝜒) ∶= ⟨𝜒, 𝑣1 − 𝑣2⟩(𝐻1(𝛺))′ ,𝐻1(𝛺), ∀𝜒 ∈ (𝐻1(𝛺))′, ∀𝒗 ∈ (𝐻1(𝛺))2.

We propose to follow Sections 2 and 3 to discretize this problem
using a finite element method (FEM), a discontinuous Galerkin (dG)
method, and a hybrid high-order method (HHO). As a consequence of
Theorem 2, all these discrete formulations are well-posed.
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4.3. Discrete setting

Let ℎ be a conforming simplicial mesh of 𝛺, i.e ℎ is a set of
triangles verifying ⋃

𝐾∈ℎ 𝐾 = 𝛺, where the intersection of the closure
of two elements of ℎ is either an empty set, a vertex, or an edge. The
number of elements composing the mesh ℎ is denoted by  . We
denote by ℎ the set of mesh edges and by  its cardinality.

Let 𝑆 ⊂ 𝛺, we denote by ℎ𝑆 the diameter of 𝑆. Moreover, we set
ℎ ∶= max𝐾∈ℎ ℎ𝐾 and for all 𝑝 ⩾ 0, we denote by P𝑝(𝑆) the set of
olynomials of total degree at most 𝑝 on 𝑆.

Furthermore, we denote by 𝑝 the set of the Lagrange nodes 𝐱𝑙 and
y 𝑝 its cardinality. The interior nodes are collected in the set  int

𝑝
(with  int

𝑝 its cardinality) and the boundary ones are collected in the
set ext

𝑝 . The nodes of an element 𝐾 ∈ ℎ are collected in the set 𝐾 and
we denote respectively by  int

𝐾 and ext
𝐾 the set of the Lagrange nodes

in 𝐾 ∩𝛺 and in 𝐾 ∩ 𝜕𝛺.
For all the numerical schemes that we propose, we discretize the

bilinear form 𝑎 with a classical discretization of the Laplace problem
and the bilinear form 𝑏 is discretized using the usual 𝐿2-scalar product
of 𝛺. That way, we expect to get consistent schemes.

4.4. Finite element method

In this section, for 𝑝 ⩾ 1, we consider continuous piecewise P𝑝-
olynomial functions. We introduce the finite element spaces

𝛬ℎ ∶=
{

𝑣ℎ ∈ 0(𝛺) s.t. 𝑣ℎ|𝐾 ∈ P𝑝(𝐾) ∀𝐾 ∈ ℎ
}

, 𝑉ℎ ∶= (𝛬ℎ)2,

𝑉ℎ ∶= 𝑉ℎ ∩ (𝐻1
0 (𝛺))2,

𝑉 𝑔
ℎ ∶=

2
∏

𝛼=1
𝑉 𝑔𝛼
ℎ ,

𝑉 𝑔𝛼
ℎ ∶=

{

𝑣ℎ ∈ 0(𝛺) s.t. 𝑣ℎ|𝐾 ∈ P𝑝(𝐾) ∀𝐾 ∈ ℎ, 𝑣ℎ|𝜕𝛺 = 𝑔𝛼
}

.

Note that here we abuse the notation by writing 𝑔𝛼 instead of 𝑔𝛼ℎ. We
define the Lagrange basis function 𝛤𝑙 ∈ 𝛬ℎ associated to the Lagrange
ode 𝐱𝑙 ∈ 𝑝 by 𝛤𝑙(𝐱𝑘) ∶= 𝛿𝑘𝑙. We also define the discrete nonempty
losed convex sets
𝑔
ℎ ∶=

{

𝒗ℎ ∶=
(

𝑣1ℎ, 𝑣2ℎ
)

∈ 𝑉 𝑔
ℎ ,

(

𝑣1ℎ − 𝑣2ℎ
)

(𝐱𝑙) ⩾ 0 ∀𝐱𝑙 ∈  int
𝑝

}

,

𝛬ℎ ∶=
{

𝑣ℎ ∈ 𝛬ℎ s.t. 𝑣ℎ(𝐱𝑙) ⩾ 0 ∀𝐱𝑙 ∈  int
𝑝

}

,

𝛬ℎ ∶=
{

𝑣ℎ ∈ 𝛬ℎ s.t.
(

𝑣ℎ, 𝛤𝑙
)

𝛺 ⩾ 0 ∀𝐱𝑙 ∈  int
𝑝 ,

(

𝑣ℎ, 𝛤𝑙
)

𝛺 = 0 ∀𝐱𝑙 ∈ ext
𝑝

}

.

Note that 𝑔
ℎ ⊂ 𝑔 when 𝑝 = 1 and 𝑔

ℎ ⊄ 𝑔 when 𝑝 ⩾ 2. However,
𝛬ℎ ⊄ 𝛬 for all 𝑝 ⩾ 1 since we may have 𝜒ℎ ∈ 𝛬ℎ with 𝜒ℎ(𝐱𝑙) < 0 for
some 𝐱𝑙 ∈ ext

𝑝 . For all 𝒗ℎ,𝒘ℎ ∈ 𝑉ℎ, we define

𝑎ℎ(𝒗ℎ,𝒘ℎ) ∶=
2
∑

𝛼=1
𝜇𝛼

(

𝛁𝑣𝛼ℎ,𝛁𝑤𝛼ℎ
)

𝛺 , 𝓁ℎ(𝒗ℎ) ∶=
2
∑

𝛼=1

(

𝑓𝛼 , 𝑣𝛼ℎ
)

𝛺 .

Note that 𝑎ℎ is coercive on 𝑉ℎ × 𝑉ℎ. We then consider the mixed
problem (18) with

𝑏ℎ(𝒘ℎ, 𝜁ℎ) ∶= (𝑤1ℎ −𝑤2ℎ, 𝜁ℎ)𝛺 , ∀𝒘ℎ ∈ 𝑉ℎ, ∀𝜁ℎ ∈ 𝛬ℎ.

This discretization method has already been studied in [25] in the
context of a posteriori estimates. The framework of Section 2 applies
here with 𝑚♭ ∶= 𝑝 and 2𝑚⋆ = 𝑚# = 2 int

𝑝 . The linear problem with
complementarity constraints that we solve is (27) with

E ∶=
[

𝜇1S 𝟎 −Id
𝟎 𝜇2S Id

]

, 𝑭 ∶=
[

𝑭 1,𝑭 2
]

, 𝑿ℎ ∶=
[

𝑿𝑎
1ℎ,𝑿

𝑏
2ℎ,𝑿3ℎ

]

.

(42)

Here, S ∈ R𝑚⋆ ,𝑚⋆ is the finite element stiffness matrix defined by
S𝑙,𝑘 ∶=

(

𝛁𝛤𝑙 ,𝛁𝛤𝑘
)

𝛺, ∀1 ⩽ 𝑘, 𝑙 ⩽ 𝑚⋆, and 𝑭 𝛼 ∈ R𝑚⋆ , 𝛼 ∈ {1, 2}, is defined
by

(

𝑭 𝛼
)

𝑙 ∶=
(

𝑓𝛼 , 𝛤𝑙
)

𝛺 − 𝜇𝛼
(

𝛁𝑔𝛼 ,𝛁𝛤𝑙
)

𝛺 ∀1 ⩽ 𝑙 ⩽ 𝑚⋆. The vectors 𝑿𝑎
1ℎ,

𝑏
𝑿2ℎ and 𝑿3ℎ are the coordinates (up to liftings) of 𝑢1ℎ, 𝑢2ℎ in the basis
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(𝛤𝑙)1⩽𝑙⩽𝑚⋆ and of 𝜆ℎ in (𝜉𝑙)1⩽𝑙⩽𝑚⋆ . The complementarity constraints read

𝑿𝑎
1ℎ −𝑿𝑏

2ℎ ⩾ 0, 𝑿3ℎ ⩾ 0,
(

𝑿𝑎
1ℎ −𝑿𝑏

2ℎ
)

⋅𝑿3ℎ = 0. (43)

Any C-function can be employed to transform the complementarity
constraints (43) onto a system of algebraic equalities. In the sequel, we
employ Algorithm 1 with the min C-function to compute the solution of
the nonlinear discrete problem. We expect to get a 𝑝 convergence rate
in energy norm.

4.5. Discontinuous Galerkin method

In this section, we consider the discontinuous Galerkin method
for problem (41). The discontinuous Galerkin spaces corresponding to
Section 2 are defined by

𝛬ℎ ∶=
{

𝑣ℎ ∈ 𝐿2(𝛺) s.t. 𝑣ℎ|𝐾 ∈ P𝑝(𝐾) ∀𝐾 ∈ ℎ
}

⊄ 𝛬,

𝑉ℎ ∶=
{

𝒗ℎ ∶= (𝑣1ℎ, 𝑣2ℎ) ∈ (𝐿2(𝛺))2 s.t. 𝒗ℎ|𝐾 ∈ (P𝑝(𝐾))2 ∀𝐾 ∈ ℎ
}

⊄ 𝑉 ,

𝑉ℎ ∶=
{

𝒗ℎ ∈ 𝑉ℎ s.t. 𝒗ℎ = 0 on 𝜕𝛺
}

⊄ 𝑉 ,

𝑉 𝑔
ℎ ∶=

2
∏

𝛼=1
𝑉 𝑔𝛼
ℎ ⊄ 𝑉 𝑔 ,

𝑉 𝑔𝛼
ℎ ∶= {𝑣ℎ ∈ 𝐿2(𝛺) s.t. 𝑣ℎ|𝐾 ∈ P𝑝(𝐾) ∀𝐾 ∈ ℎ and 𝑣ℎ = 𝑔𝛼 on 𝜕𝛺}.

The discrete convex sets are defined by

𝛬ℎ ∶=
{

𝑣ℎ ∈ 𝛬ℎ s.t. 𝑣ℎ|𝐾 (𝐱𝑙) ⩾ 0 ∀𝐱𝑙 ∈  int
𝐾 and ∀𝐾 ∈ ℎ

}

⊄ 𝛬,

𝑔
ℎ ∶=

{

𝒗ℎ ∶=
(

𝑣1ℎ, 𝑣2ℎ
)

∈ 𝑉 𝑔
ℎ s.t.

(

𝑣1ℎ − 𝑣2ℎ
)

|𝐾 (𝐱𝑙) ⩾ 0

∀𝐱𝑙 ∈  int
𝐾 ∀𝐾 ∈ ℎ

}

⊄ 𝑔 ,

𝛬ℎ ∶=
{

𝑣ℎ ∈ 𝛬ℎ s.t.
(

𝑣ℎ|𝐾 , 𝛤𝑙|𝐾
)

𝐾 ⩾ 0 ∀𝐾 ∈ ℎ, ∀𝐱𝑙 ∈  int
𝐾 ,

and
(

𝑣ℎ|𝐾 , 𝛤𝑙|𝐾
)

𝐾 = 0 ∀𝐾 ∈ ℎ ∀𝐱𝑙 ∈ ext
𝐾

}

,

where here, for 𝑚♭ ∶= 1
2 (𝑝 + 1)(𝑝 + 2) , (𝛤𝑙)1⩽𝑙⩽𝑚♭ is the basis of 𝛬ℎ

such that for all 𝑙 ∈ [1, 𝑚♭], there exists 𝐾 ∈ ℎ such that the support of
𝛤𝑙 is in 𝐾 and 𝛤𝑙 takes value one at one Lagrange node of 𝐾 and zero
at the other Lagrange nodes.

Let us define for all 𝒗ℎ,𝒘ℎ in 𝑉ℎ the bilinear form:

𝑎ℎ(𝒗ℎ,𝒘ℎ) ∶=
2
∑

𝛼=1
𝜇𝛼ℎ(𝑣𝛼ℎ, 𝑤𝛼ℎ),

ℎ(𝑣𝛼ℎ, 𝑤𝛼ℎ) ∶=
∑

𝐾∈ℎ

(

𝛁𝑣𝛼ℎ,𝛁𝑤𝛼ℎ
)

𝐾 + 𝛿ℎ(𝑣𝛼ℎ, 𝑤𝛼ℎ).

Here, several choices are possible for the bilinear form 𝛿ℎ in order
to enforce ℎ to be coercive. We mention the SIPG method [45,46]:
for all 𝑣ℎ ∈ 𝛬ℎ and 𝑤ℎ ∈ 𝛬ℎ,

𝛿ℎ(𝑣ℎ, 𝑤ℎ) ∶= −
∑

𝐹∈ℎ

({{

𝛁𝑤ℎ
}}

𝐹 J𝑣ℎK𝐹 +
{{

𝛁𝑣ℎ
}}

𝐹 J𝑤ℎK𝐹 , 1
)

𝐹

+
∑

𝐹∈ℎ

𝛾
ℎ𝐹

(

J𝑤ℎK𝐹 , J𝑣ℎK𝐹
)

𝐹 ,
(44)

and the NIPG method [47]: for all 𝑣ℎ ∈ 𝛬ℎ and 𝑤ℎ ∈ 𝛬ℎ,

𝛿ℎ(𝑣ℎ, 𝑤ℎ) ∶= −
∑

𝐹∈ℎ

({{

𝛁𝑤ℎ
}}

𝐹 J𝑣ℎK𝐹 −
{{

𝛁𝑣ℎ
}}

𝐹 J𝑤ℎK𝐹 , 1
)

𝐹

+
∑

𝐹∈ℎ

𝛾
ℎ𝐹

(

J𝑤ℎK𝐹 , J𝑣ℎK𝐹
)

𝐹 ,
(45)

where J𝑣ℎK𝐹 and
{{

𝑣ℎ
}}

𝐹 denote respectively the jump and the mean
value of 𝑣ℎ across 𝐹 ∈ ℎ. For edges on the boundary, these values
will both be taken as 𝑣ℎ. Note that in the SIPG method, the parameter
𝛾 > 0 has to be large enough to enforce the coercivity of ℎ, see [46,
Lemma 4.12], while it can be taken arbitrarily in the NIPG method.

Next, we define the continuous linear form 𝓁ℎ by

𝓁ℎ(𝒘ℎ) ∶=
2
∑ ∑

(𝑓𝛼|𝐾 , 𝑤𝛼ℎ|𝐾 )𝐾 , ∀𝒘ℎ ∈ 𝑉ℎ. (46)

𝛼=1𝐾∈ℎ

68
We then consider the mixed problem (18) with

𝑏ℎ(𝒘ℎ, 𝜁ℎ) ∶=
∑

𝐾∈ℎ

(

𝑤1ℎ|𝐾 −𝑤2ℎ|𝐾 , 𝜁ℎ|𝐾
)

𝐾 , ∀𝒘ℎ ∈ 𝑉ℎ, ∀𝜁ℎ ∈ 𝛬ℎ. (47)

Following Section 2, we solve (27) with

E ∶=
[

𝜇1S 𝟎 −Id
𝟎 𝜇2S Id

]

, 𝑭 ∶=
[

𝑭 1,𝑭 2
]

, 𝑿ℎ ∶=
[

𝑿𝑎
1ℎ,𝑿

𝑏
2ℎ,𝑿3ℎ

]

.

Here, 𝑚⋆ is the number of internal DOFs and S ∈ R𝑚⋆ ,𝑚⋆ with
S𝑙,𝑘 ∶= ℎ(𝛤𝑘, 𝛤𝑙) and (𝑭 𝛼)𝑙 ∶=

∑

𝐾∈ℎ (𝑓𝛼 , 𝛤𝑙)𝐾 − 𝜇𝛼ℎ(𝑔𝛼ℎ, 𝛤𝑙). The
omplementarity constraints are this time given in all elements 𝐾 ∈ ℎ
y
𝑎
1ℎ|𝐾 −𝑿𝑏

2ℎ|𝐾 ⩾ 0, 𝑿3ℎ|𝐾 ⩾ 0,
(

𝑿𝑎
1ℎ|𝐾 −𝑿𝑏

2ℎ|𝐾
)

⋅𝑿3ℎ|𝐾 = 0, (48)

here 𝑿𝑎
1ℎ|𝐾 , 𝑿𝑏

2ℎ|𝐾 and 𝑿3ℎ|𝐾 denote the coordinates of respectively
1ℎ|𝐾 , 𝑢2ℎ|𝐾 and 𝜆ℎ|𝐾 in the element 𝐾 ∈ ℎ. We expect to get a
convergence rate in energy norm.

.6. Hybrid high-order method

The hybrid high-order method (HHO) has been recently introduced
n [48,49]. It is closely related to hybridizable discontinuous Galerkin
HDG) and to nonconforming virtual element methods (ncVEM) [50].
s other discontinuous skeletal methods, the unknowns are polynomial

unctions attached to the cells and the edges of the mesh. The poly-
omials attached to the edges are independent and do not necessarily
orrespond to the traces of the cell polynomials.

The polynomials attached to the cells can be eliminated through a
tatic condensation procedure (see Section 4.7). The size of the linear
ystem that is solved is then equal to the number of edge unknowns.
he cell unknowns can finally be recovered by local solves in a post-
rocessing step. For high-order polynomials, we expect this method to
ave fewer degrees of freedom than more classical methods such as
EM.

A HHO method for a contact problem has already been proposed
n [21]. The constraint was that the mean value of 𝛷ℎ(𝑢ℎ) over each
ell had to be nonnegative. In our approach, the constraint is expressed
odewise.

We present in this section, the HHO method without the static
ondensation procedure that is treated in Section 4.7. For 𝑝 ⩾ 1, the
isplacement of each membrane is represented by a P𝑝-polynomial
unction in every cell 𝐾 ∈ ℎ and a P𝑝−1-polynomial function on every
dge 𝐹 ∈ ℎ. We introduce the following space

̂ℎ ∶=
∏

𝐾∈ℎ

P𝑝(𝐾) ×
∏

𝐹∈ℎ

P𝑝−1(𝐹 ), (49)

nd for 𝐾 ∈ ℎ, its local analogue

̂𝐾 ∶= P𝑝(𝐾) ×
∏

𝐹∈𝐾

P𝑝−1(𝐹 ),

hat contains the polynomials attached to the cell 𝐾 and its surround-
ng edges (the corresponding degrees of freedom are represented in
ig. 1). We denoted by 𝐾 ∶=

{

𝐹 ∈ ℎ s.t. 𝐹 ⊂ 𝜕𝐾
}

the set of edges
urrounding 𝐾.

As usual for HHO methods, for all 𝐾 ∈ ℎ, an element 𝑣̂𝐾 of 𝑈̂𝐾 has a
olynomial component attached to the cell 𝐾 that we denote by 𝑣𝐾 and
polynomial component attached to every edge surrounding 𝐾 that we
enote by 𝑣𝜕𝐾 ∶= (𝑣𝐹 )𝐹∈𝐾 . In a similar way, for every element 𝑣̂ℎ of
̂ℎ, we denote by 𝑣𝐾 the polynomial function attached to 𝐾 ∈ ℎ and by
𝜕𝐾 ∶= (𝑣𝐹 )𝐹∈𝐾 the polynomial functions attached to the surrounding
dges of 𝐾 and 𝑣̂𝐾 ∶= (𝑣𝐾 , 𝑣𝜕𝐾 ).

We introduce the following vector spaces

𝑉ℎ ∶=
(

𝑈̂ℎ
)2 , 𝑉ℎ ∶=

{

𝒗ℎ ∈ 𝑉ℎ s.t. 𝒗ℎ|𝜕𝛺 = 0
}

and

𝑉 𝑔 ∶=
{

𝒗 ∈ 𝑉 s.t. 𝒗 | = 𝒈
}

,
ℎ ℎ ℎ ℎ 𝜕𝛺
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Fig. 1. Representation of the degrees of freedom of 𝑈̂𝐾 . The cell DOFs are in blue, the edges DOFs are in red.
f
t

where here 𝒗ℎ|𝜕𝛺 stands for the polynomials attached to the faces
composing 𝜕𝛺. For 𝒗ℎ ∈ 𝑉ℎ, we denote by 𝑣̂1ℎ, 𝑣̂2ℎ ∈ 𝑈̂ℎ the components
f 𝒗ℎ, i.e. 𝒗ℎ ∶= (𝑣̂1ℎ, 𝑣̂2ℎ).

The Lagrange multiplier is represented by a P𝑝-polynomial function
n every cell 𝐾 ∈ ℎ, so that

ℎ̃ ∶=
∏

𝐾∈ℎ

P𝑝(𝐾). (50)

or all 𝜒ℎ of 𝛬ℎ, we denote by 𝜒𝐾 the polynomial of 𝜒ℎ attached to the
ell 𝐾 ∈ ℎ.

We define in every cell 𝐾 ∈ ℎ a gradient reconstruction operator
𝐾 ∶ 𝑈̂𝐾 → P𝑝(𝐾;R2) such that for all 𝑣̂𝐾 ∈ 𝑈̂𝐾 and for all 𝐪 ∈
𝑝(𝐾;R2) we have

𝐆𝐾 (𝑣̂𝐾 ),𝐪)𝐾 ∶= (𝛁𝑣𝐾 ,𝐪)𝐾 +
∑

𝐹∈𝐾

(𝑣𝐹 − 𝑣𝐾 ,𝐪 ⋅ 𝐧𝐾 )𝐹 ,

here P𝑝(𝐾;R2) denotes the set of vector-valued polynomials of degree
t most 𝑝 and 𝐧𝐾 is the outward unit normal vector to the element
. This gradient reconstruction takes into account the value of the
olynomials attached to the cell 𝐾 and to the surrounding edges.
oreover it approximates the continuous gradient at optimal rate, see

or instance [51, Lemma 8] for a proof in the context of unfitted meshes.
We consider problem (18) with the linear and bilinear forms defined

uch that for all 𝒗ℎ,𝒘ℎ ∈ 𝑉ℎ and all 𝜒ℎ ∈ 𝛬ℎ,

𝑎ℎ(𝒗ℎ,𝒘ℎ) ∶=
2
∑

𝛼=1
𝜇𝛼ℎ(𝑣̂𝛼ℎ, 𝑤̂𝛼ℎ),

ℎ(𝒘ℎ) ∶=
∑

𝐾∈ℎ

2
∑

𝛼=1
(𝑓𝛼 , 𝑤𝛼𝐾 )𝐾 , 𝑏ℎ(𝒘ℎ, 𝜒ℎ) ∶=

∑

𝐾∈ℎ

(

𝑤1𝐾 −𝑤2𝐾 , 𝜒𝐾
)

𝐾 ,

where for all 𝑣̂ℎ, 𝑤̂ℎ ∈ 𝑈̂ℎ

ℎ(𝑣̂ℎ, 𝑤̂ℎ) ∶=
∑

𝐾∈ℎ

(

(

𝐆𝐾 (𝑣̂𝐾 ),𝐆𝐾 (𝑤̂𝐾 )
)

𝐾

+ ℎ−1𝐾
∑

𝐹∈𝐾

(

𝛱𝑝−1
𝐹 (𝑣𝐾 − 𝑣𝐹 ), 𝑤𝐾 −𝑤𝐹

)

𝐹

)

,

where 𝛱𝑝−1
𝐹 is the 𝐿2-projector onto P𝑝−1(𝐹 ). A proof of the coercivity

of 𝑎ℎ can be found for instance in [51, Corollary 7] in the context of
unfitted meshes.

Note that in the present approach, we choose to impose the com-
plementarity constraints on the cell unknowns only (we do not impose
constraints on the polynomials attached to the edges), so that 𝛷ℎ ∶
(𝑈̂ℎ)2 →

∏

𝐾∈ℎ P𝑝(𝐾) is defined by

𝛷ℎ(𝒗ℎ)|𝐾 ∶= 𝑣1𝐾 − 𝑣2𝐾 , ∀𝐾 ∈ ℎ, ∀𝒗ℎ ∈ 𝑉ℎ.

The nonempty closed convex set is then

𝑔
ℎ ∶= {𝒗ℎ ∈ 𝑉 𝑔

ℎ s.t. 𝑣1𝐾 (𝐱𝑙) − 𝑣2𝐾 (𝐱𝑙) ⩾ 0 ∀𝐾 ∈ ℎ, ∀𝐱𝑙 ∈ 𝐾},

and we have

𝛬 ∶=
{

𝑣 ∈ 𝛬 s.t. 𝑣 | (𝐱 ) ⩾ 0 ∀𝐱 ∈  and ∀𝐾 ∈ 
}

⊄ 𝛬,
ℎ ℎ ℎ ℎ 𝐾 𝑙 𝑙 𝐾 ℎ

69
𝛬ℎ ∶=
{

𝑣ℎ ∈ 𝛬ℎ s.t.
(

𝑣ℎ|𝐾 , 𝛤𝑙|𝐾
)

𝐾 ⩾ 0 ∀𝐾 ∈ ℎ, ∀𝐱𝑙 ∈ 𝐾

}

,

where (𝛤𝑙)1⩽𝑙⩽𝑚𝑐
is the basis defined in Section 4.5. Here, we have

denoted by 𝑚𝑐 ∶= 𝑚⋆ = 1
2 (𝑝+1)(𝑝+2) the number of basis functions

attached to the cells.
According to the definitions (49) and (50), we can complete the

basis of cell functions (𝛤𝑙)1⩽𝑙⩽𝑚𝐶
(basis of 𝛬ℎ) with a basis of edge

unctions
(

𝛽𝑙
)

1⩽𝑙⩽𝑚𝐹
to get a basis of 𝑈̂ℎ, where 𝑚𝐹 ∶=  int

 𝑝 with  int


he number of internal edges. We then solve problem (27) with

E ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝜇1S𝐶𝐶 𝜇1S𝐶𝐹 𝟎 𝟎 −Id
𝜇1S𝐹𝐶 𝜇1S𝐹𝐹 𝟎 𝟎 𝟎

𝟎 𝟎 𝜇2S𝐶𝐶 𝜇2S𝐶𝐹 Id
𝟎 𝟎 𝜇2S𝐹𝐶 𝜇2S𝐹𝐹 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑭 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑭 1
𝟎
𝑭 2
𝟎

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑿ℎ ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑿𝑎
𝐶

𝑿𝑎
𝐹

𝑿𝑏
𝐶

𝑿𝑏
𝐹

𝑿3ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Here, the matrices S𝐶𝐶 ∈ R𝑚𝑐 ,𝑚𝑐 , S𝐶𝐹 ∈ R𝑚𝑐 ,𝑚𝐹 , S𝐹𝐶 ∈ R𝑚𝐹 ,𝑚𝑐 , and
S𝐹𝐹 ∈ R𝑚𝐹 ,𝑚𝐹 are defined by

(S𝐶𝐶 )𝑙,𝑘 ∶= ℎ(𝛤𝑘, 𝛤𝑙), ∀1 ⩽ 𝑙, 𝑘 ⩽ 𝑚𝑐 ,

(S𝐶𝐹 )𝑙,𝑘 ∶= ℎ(𝛽𝑘, 𝛤𝑙), ∀1 ⩽ 𝑙 ⩽ 𝑚𝑐 , ∀1 ⩽ 𝑘 ⩽ 𝑚𝐹 ,

(S𝐹𝐶 )𝑙,𝑘 ∶= ℎ(𝛤𝑘, 𝛽𝑙), ∀1 ⩽ 𝑙 ⩽ 𝑚𝐹 , ∀1 ⩽ 𝑘 ⩽ 𝑚𝑐 ,

(S𝐹𝐹 )𝑙,𝑘 ∶= ℎ(𝛽𝑘, 𝛽𝑙), ∀1 ⩽ 𝑙, 𝑘 ⩽ 𝑚𝐹 .

Moreover, the right-hand side 𝑭 𝛼 ∈ R𝑚𝑐 is defined by (𝑭 𝛼)𝑙 ∶=
(𝑓𝛼 , 𝛤𝑙)𝛺 ∀1 ⩽ 𝑙 ⩽ 𝑚𝑐 . The unknown vector 𝑿ℎ ∈ R3𝑚𝑐+2𝑚𝐹 is composed
of the cell DOFs and edge DOFs of the first displacement denoted by
𝑿𝑎

𝐶 ∈ R𝑚𝑐 and 𝑿𝑎
𝐹 ∈ R𝑚𝐹 , the cell DOFs and edge DOFs of the second

displacement denoted by 𝑿𝑏
𝐶 ∈ R𝑚𝑐 and 𝑿𝑏

𝐹 ∈ R𝑚𝐹 , and the cell DOFS
of the Lagrange multiplier denoted by 𝑿3ℎ ∈ R𝑚𝑐 . The complementarity
constraints are given by (48). We expect to get a convergence rate of
order 𝑝 in energy norm.

Remark 4.1. The discrete displacements 𝑢̂1ℎ and 𝑢̂2ℎ have cell and
edge degrees of freedom contrary to the discrete Lagrange multiplier 𝜆ℎ
which only has cell degrees of freedom. We tested numerically a similar
discretization with constraints on the edge unknowns then generating
also edge degrees of freedom for the Lagrange multiplier. We observed
similar results but involving a larger linear system.

4.7. Static condensation for skeletal methods

We describe in this section the static condensation procedure used
to speed up skeletal methods such as HHO. In this procedure, we first
rewrite the linear system as a system involving the edge unknowns
only. Then, we recover the cell unknowns by means of local solves.
For the sake of clarity, we first present how the cell unknowns can
be recovered and then we give the linear problem fulfilled by the
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edge unknowns. This procedure is summed up in Algorithm 2. Note
that a preprocessing step is needed before every semismooth Newton
iteration. In this section, we treat only the min C-function as we proved
its convergence properties in Section 3.2.

Let 𝑘 ⩾ 1 be a semismooth Newton step and let 𝑿𝑘−1
ℎ ∈ R3𝑚𝑐+2𝑚𝐹 be

he associated solution (computed e.g. by Algorithm 1). For every cell
∈ ℎ, if we are given the solution attached to the surrounding edges,

hen we are able to recover the solution attached to 𝐾. More precisely,
et 𝑿𝑘−1

𝐾 ∶= [𝑿𝑘−1
1𝐾 ,𝑿𝑘−1

2𝐾 ,𝑿𝑘−1
3𝐾 ] ∈ R3 dim(P𝑝(𝐾)) be the components of

he solution attached to 𝐾 representing respectively 𝑢𝑘−11𝐾 , 𝑢𝑘−12𝐾 and
𝜆𝑘−1𝐾 in P𝑝(𝐾) (at Newton step 𝑘 − 1) and let 𝑿𝑘

𝜕𝐾 ∈ R2×3 dim(P𝑝−1(𝐹 ))

be the components of 𝒖𝑘𝜕𝐾 ∶= (𝑢𝑘1|𝜕𝐾 , 𝑢
𝑘
2|𝜕𝐾 ) the solution attached

to the surrounding edges at the semismooth Newton step 𝑘. Then,
knowing 𝑿𝑘

𝜕𝐾 and 𝑿𝑘−1
𝐾 , we can recover the local cell unknowns 𝑿𝑘

𝐾 ∶=
[𝑿𝑘

1𝐾 𝑿𝑘
2𝐾 𝑿𝑘

3𝐾 ] by solving the local problem: Find 𝑿𝑘
𝐾 ∈ R3 dim(P𝑝(𝐾))

such that

J𝑘−1𝐾 𝑿𝑘
𝐾 = 𝑩𝑘

𝐾 , (51)

where the matrix J𝑘−1𝐾 ∈ R3 dim(P𝑝(𝐾)),3 dim(P𝑝(𝐾)) is the local contribution
to the generalized jacobian J𝑘−1 (see (32)), i.e.

J𝑘−1𝐾 ∶=
⎡

⎢

⎢

⎣

𝜇1S𝐾𝐾 0 −Id
0 𝜇2S𝐾𝐾 +Id
C1𝐾 C2𝐾 C3𝐾

⎤

⎥

⎥

⎦

,

𝑩𝑘
𝐾 ∶=

⎡

⎢

⎢

⎣

𝑭 1𝐾 − 𝜇1S𝐾𝐹𝑿𝑘
1𝜕𝐾

𝑭 2𝐾 − 𝜇2S𝐾𝐹𝑿𝑘
2𝜕𝐾

0

⎤

⎥

⎥

⎦

.

(52)

For 𝑙 ⩾ 1 and 𝐾 ∈ ℎ, let us denote by 𝐾𝑙 the global index associated
to the 𝑙th basis function attached to 𝐾. We also denote by 𝑙 the
global index corresponding to the 𝑙th basis function attached to 𝜕𝐾.
The last line-block

[

C1𝐾 ,C2𝐾 ,C3𝐾
]

∈ Rdim(P𝑝(𝐾)),3 dim(P𝑝(𝐾)) of matrix
J𝑘−1𝐾 is the local version of 𝐉𝐂(𝑿𝑘−1) defined in Section 3.2, i.e. if
(

𝑢𝑘−11𝐾 − 𝑢𝑘−12𝐾
)

(𝐱𝐾𝑙
) ⩽ 𝜆𝑘−1𝐾 (𝐱𝐾𝑙

) the 𝑙th line of
[

C1𝐾 ,C2𝐾 ,C3𝐾
]

is defined
by the 𝑙th line of the block matrix

[

Id,−Id, 𝟎
]

∈ Rdim(P𝑝(𝐾)),3 dim(P𝑝(𝐾)) and
f
(

𝑢𝑘−11𝐾 − 𝑢𝑘−12𝐾
)

(𝐱𝐾𝑙
) > 𝜆𝑘−1𝐾 (𝐱𝐾𝑙

) the 𝑙th line of
[

C1𝐾 ,C2𝐾 ,C3𝐾
]

is de-
fined by the 𝑙th line of the block matrix

[

𝟎, 𝟎, Id
]

∈ Rdim(P𝑝(𝐾)),3 dim(P𝑝(𝐾)).
urthermore,
[

S𝐾𝐾
]

𝑙,𝑙′ ∶= ℎ(𝛤𝐾𝑙′
, 𝛤𝐾𝑙

), ∀1 ⩽ 𝑙, 𝑙′ ⩽ dim(P𝑝(𝐾)),
[

S𝐾𝐹
]

𝑙,𝑙′ ∶= ℎ(𝛽𝑙′
, 𝛤𝐾𝑙

), ∀1 ⩽ 𝑙 ⩽ dim(P𝑝(𝐾)), ∀1 ⩽ 𝑙′⩽ 3 dim(P𝑝−1(𝐹 )),

and 𝑭 𝛼𝐾 denotes the components of 𝑭 𝛼 associated to 𝐾 ∈ ℎ. In the
revious expressions, we have used (𝛤𝑙) the basis of functions attached

to the cells and (𝛽𝑙) the basis of functions attached to the edges.

Remark 4.2. The problem (51) actually corresponds to a local contact
problem between two membranes: given the value of the displacements
of the two membranes on the edges composing 𝜕𝐾, we solve the contact
problem inside the cell 𝐾.

In a similar way to the proof of Theorem 5, we can prove that
problem (51) admits a unique solution 𝑿𝑘

𝐾 ∈ R3 dim(P𝑝(𝐾)) and then

𝑿𝑘
𝐾 =

[

J𝑘−1𝐾
]−1 𝑩𝑘

𝐾 , (53)

where

[

J𝑘−1𝐾
]−1 =∶

⎡

⎢

⎢

⎣

D𝑘−1
11 D𝑘−1

12 D𝑘−1
13

D𝑘−1
21 D𝑘−1

22 D𝑘−1
23

D𝑘−1
31 D𝑘−1

32 D𝑘−1
33

⎤

⎥

⎥

⎦

.

ere, the matrices D𝑘−1
𝛼𝛾 ∈ Rdim(P𝑝(𝐾)),dim(P𝑝(𝐾)), 𝛼, 𝛾 ∈ {1, 2, 3} are

dentified from the numerical computation of
[

J𝑘−1𝐾
]−1. Now, let us

resent the problem satisfied by the edge unknowns. Let us denote
y 𝑿𝑘

ℎ𝐹 ∈ R2𝑚𝐹 the coordinates of all the polynomial unknowns

ttached to the edges (at the semismooth Newton step 𝑘 ⩾ 1). These

70
oordinates can be computed by solving the following problem: Find
𝑘
ℎ𝐹 ∶= [𝑿𝑘

𝑎 ,𝑿
𝑘
𝑏 ] ∈ R2𝑚𝐹 such that

[

Ã𝑘−1
11 Ã𝑘−1

12
Ã𝑘−1
21 Ã𝑘−1

22

]

[

𝑿𝑘
𝑎

𝑿𝑘
𝑏

]

=

[

𝑭
𝑘−1
1

𝑭
𝑘−1
2

]

, (54)

where for 𝛼, 𝛾 ∈ {1, 2}, Ã𝑘−1
𝛼𝛾 ∈ R𝑚𝐹 ,𝑚𝐹 and 𝑭

𝑘−1
𝛼 ∈ R𝑚𝐹 are defined by

[Ã𝑘−1
𝛼𝛾 ]𝑖,𝑗 ∶= 𝛿𝛼𝛾𝜇𝛼[S𝐹𝐹 ]𝑖,𝑗 +

∑

𝐾∈ℎ

[

−𝜇𝛼𝜇𝛾S𝐹𝐾D𝑘−1
𝛼𝛾 S𝐾𝐹

]

̃𝑖 ,̃𝑗
, (55)

[𝑭
𝑘−1
𝛼 ]𝑖 ∶=

∑

𝐾∈ℎ

[

−𝜇𝛼S𝐹𝐾 (D𝑘−1
𝛼1 𝑭 1𝐾 + D𝑘−1

𝛼2 𝑭 2𝐾 )
]

̃𝑖
, (56)

where [S𝐹𝐹 ]𝑖,𝑗 ∶= ℎ(𝛽𝑗 , 𝛽𝑖) and (S𝐹𝐾 )𝑖,𝑗 ∶= ℎ(𝛤𝐾𝑗
, 𝛽𝐹𝑖 ). Here, we

denoted by ̃𝑖 the local edge index associated to 𝛽𝑖. If 𝑖 is not associated
to a basis function in 𝜕𝐾 then we set [⋅]̃𝑖

= 0.
Observe that constructing the matrices Ã𝑘−1

𝛼𝛾 follows an assembling.
For every 𝐾 ∈ ℎ, we compute the local contribution corresponding to
the terms inside the brackets in (55)–(56) and we add it to the global
contributions provided by the matrix S𝐹𝐹 . The resulting stencil couples
unknowns attached to neighboring edges (in the sense of cells).

The semismooth Newton algorithm with static condensation consists
first in solving the global problem (54) in order to find the degrees of
freedom attached to the edges of the mesh and then solve for every
𝐾 ∈ ℎ the local problem (51) to find the unknowns attached to the
cells. We sum up these stages in Algorithm 2.

Algorithm 2 Newton-min algorithm with static condensation

1. Choose an initial vector 𝑿0
ℎ ∶=

[

𝑿0
ℎ𝐶 ,𝑿

0
ℎ𝐹

]

∈ R3𝑚𝑐+2𝑚𝐹 and set
𝑘 = 1.
2. Let 𝜀lin > 0 be a fixed parameter. Consider the C-function min
of (30).

while
‖

‖

‖

‖

‖

(

𝑭 − E𝑿𝑘−1
ℎ

𝐶(𝑿𝑘−1
ℎ )

)

‖

‖

‖

‖

‖2
⩾ 𝜀lin

‖

‖

‖

‖

‖

(

𝑭 − E𝑿0
ℎ

𝐶(𝑿0
ℎ)

)

‖

‖

‖

‖

‖2
do

3. For 𝑘 ⩾ 1, 𝑿𝑘−1
ℎ ∈ R3𝑚𝐶+2𝑚𝐹 is given. In every cell 𝐾 ∈ ℎ,

we compute the local matrices of (52) and we can identify D𝑘−1
𝛼𝛾 ,

1 ⩽ 𝛼, 𝛾 ⩽ 3 with (53). We then assemble the local contributions to
get the matrices (55)–(56).
4. We solve the linear problem (54) and get the coordinates 𝑿𝑘

ℎ𝐹 ∈
R2𝑚𝐹 of the edges components.
5. For every cell 𝐾 ∈ ℎ, we solve the local problem (51) to
recover the unknowns attached to the cells. We build a new vector
𝑿𝑘

ℎ ∈ R3𝑚𝐶+2𝑚𝐹 and we test the condition of the while loop.
end while

Lemma 6. For 𝑿𝑘−1
ℎ ∈ R3𝑚𝑐+2𝑚𝐹 given, the vector 𝑿𝑘

ℎ obtained by one
Newton-min iteration of Algorithm 2 coincides with the one obtained by one
Newton-min iteration of Algorithm 1.

Proof. Let us denote by 𝑿𝑘
ℎ the solution obtained by Algorithm 1. We

can easily show that the components of 𝑿𝑘
ℎ attached to 𝐾 are solution

to (51) (for all 𝐾 ∈ ℎ). Moreover, by injecting (53) in (54), we show
that the components of 𝑿𝑘

ℎ attached to the edges are solution to (54).
We have proved that for every right-hand side, the solution given

by Algorithm 1 is solution to (54) (for its face components) and to (51)
(for its cell components). These systems are squared, then the solution
given by Algorithm 2 coincides with the one given by Algorithm 1. □

Remark 4.3. Compared to Algorithm 1, Algorithm 2 reduces the size
of the linear problem to solve at each iteration of the while loop since
only the degrees of freedom attached to the edges are considered.
However, since the matrices D𝑘−1

𝛼𝛾 depend on the previous state 𝑿𝑘−1
𝐾 ,

the matrices (55)–(56) have to be (at least partially) assembled at every
step of the while loop. This increases the assembly time of the method
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Fig. 2. Left: coarse mesh 0 containing 64 elements with ℎ0 = 0.25. Middle: first refined mesh 1 containing 256 elements with ℎ1 = 0.125. Right: second refined mesh 2 containing
024 elements with ℎ2 = 0.0625.
Table 1
Number of DOFs for the finite element discretization (FEM).
Mesh Number of mesh elements Mesh size ℎ P1 DOFs P2 DOFs P3 DOFs P4 DOFs

0 64 0.25 75 339 795 1443
1 256 0.125 339 1443 3315 5955
2 1024 0.0625 1443 5955 13539 24195
3 4096 0.03125 5955 24195 54723 97539
4 16384 0.015625 24195 97539 220035 391683
Table 2
Number of DOFs for the HHO method with static condensation (SC) and no static condensation (no SC).

P1 DOFs P2 DOFs P3 DOFs P4 DOFs

Mesh no SC SC no SC SC no SC SC no SC SC

0 752 176 1504 352 2448 528 3584 704
1 3040 736 6080 1472 9888 2208 14464 2944
2 12224 3008 24448 6016 39744 9024 58112 12032
3 49024 12160 98048 24320 159360 36480 232960 48640
4 196352 48896 392704 97792 638208 146688 932864 195584
𝑓

in order to decrease the time required to solve the linear system. A
comparison of those times is made in Section 5 for a sequential code.
Note however that for a parallelized code, it is much easier to distribute
the assembly step than the solve of the linear system.

5. Numerical simulations

This section illustrates numerically our theoretical developments for
the contact problem between two membranes proposed in Section 4.
We compare the performances of the finite element method (see Sec-
tion 4.4) and the hybrid high-order method (see Sections 4.6–4.7) for
the polynomial degree 𝑝 ∈ {1, 2, 3, 4}.

The problem is written in the unit square domain 𝛺 ∶= (0, 1)×(0, 1).
e start the computation with a coarse mesh 0 containing 64 elements
ith ℎ0 ∶= max𝐾∈0 ℎ𝐾 = 0.25. We consider four levels of uniform mesh

efinement in the sense that the mesh 𝑗 contains 4𝑗+3 triangles for
∈ {1, 2, 3, 4} and that each element of the mesh 𝑗 is partitioned by 4
lements in the subsequent mesh 𝑗+1 (see Fig. 2).

In Tables 1 and 2, we compare the degrees of freedom for FEM and
HO. The ones of HHO are considered with and without static conden-

ation. We observe that the HHO method needs the static condensation
rocedure to be competitive with FEM. Moreover, for low orders, FEM
ehaves better than HHO. On the contrary, for high order, the HHO
ethod requires fewer degrees of freedom compared to FEM.

A first test case with a very regular solution and Lagrange multiplier
ims at estimating the maximum convergence rate of the method.
ince in practice the solutions associated to contact problems are not
mooth, we consider a second test case with a discontinuous Lagrange
ultiplier.
71
5.1. First test case: a smooth solution

We propose an analytical solution to problem (41) given by

𝑢1(𝑟) ∶= −𝑢2(𝑟) ∶=

{

(𝑟2 − 𝑅2)𝑁 if 𝑟 ⩾ 𝑅,
0 otherwise,

𝜆(𝑟) ∶=

{

0 if 𝑟 ⩾ 𝑅,
1000𝑟3(𝑅2 − 𝑟2)3 otherwise,

where 𝑟 ∶=
√

(𝑥 − 0.5)2 + (𝑦 − 0.5)2 is the distance to the center of the
domain, 𝑅 ∶= 1∕3 is the radius of the disk where contact occurs, and
the parameter 𝑁 is chosen as 𝑁 ∶= 6 to provide a smooth solution.
This solution is associated to the right-hand sides 𝑓1 and 𝑓2 defined by

1(𝑟) ∶= −𝑓2(𝑟) ∶=

{

−4𝑁(𝑟2 − 𝑅2)𝑁−2(𝑁𝑟2 − 𝑅2) if 𝑟 ⩾ 𝑅,
−1000𝑟3(𝑅2 − 𝑟2)3 otherwise.

We set 𝜇1 ∶= 𝜇2 ∶= 1 for the sake of simplicity and we employ
the semismooth Newton linearization of Section 3 with the min func-
tion (30) and a tolerance given by 𝜀lin = 10−12. The solution to the HHO
method is obtained using Algorithm 2. For both schemes, the errors are
reported in the energy norm

|

|

‖

‖

𝒖 − 𝒖ℎ‖‖||𝛺 ∶=
⎛

⎜

⎜

⎝

∑

𝐾∈ℎ

𝜇1 ‖‖𝛁(𝑢1 − 𝑢1𝐾 )‖‖
2
𝐿2(𝐾) + 𝜇2 ‖‖𝛁(𝑢2 − 𝑢2𝐾 )‖‖

2
𝐿2(𝐾)

⎞

⎟

⎟

⎠

1
2

,

(57)

i.e. we use only the gradients of the cell unknowns.
Fig. 3 displays the behavior of the solution when the Newton-min

solver has converged and when the P2 FEM discretization is employed.
We observe from the shape of the Lagrange multiplier 𝜆ℎ a contact
zone for the two membranes in the area 𝑟 ⩽ 1

3 . Furthermore, even
at convergence, 𝜆 < 0 can occur with quadratic FEM, where small
ℎ
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Fig. 3. Solution at convergence for P2 FEM and mesh 3. Left: position of the membranes (𝑢1ℎ , 𝑢2ℎ). Right: discrete Lagrange multiplier (𝜆ℎ).
Fig. 4. Negative part of the Lagrange multiplier for FEM P2. Left: mesh 2. Right: mesh 3.
Fig. 5. Number of Newton-min iterations for each refinement level. Left: FEM method. Right: HHO method.
ndershoots take place (see Fig. 4). In fact this phenomenon occurs
or all 𝑝 ⩾ 2. Note that in Fig. 4, we have represented the function
neg
ℎ ∶= min(𝜆ℎ, 0) at all Lagrange nodes for a better understanding.
he discrete Lagrange multiplier 𝜆ℎ is nonnegative everywhere (here

𝜆negℎ = 0) only when 𝑝 = 1.
We report in Fig. 5 the required number of Newton-min iterations

needed to reach convergence. We observe that this number increases
when the number of mesh elements is increased. Furthermore, we
observe that the HHO method with static condensation is less expensive
in terms of Newton-min iterations than the FEM method with a gain
factor roughly equal to 2.

Fig. 6 displays the shape of the energy norm |||𝒖−𝒖ℎ|||𝛺 as a function
of the refinement level. We get optimal convergence rate (i.e. roughly
72
𝑝) for 𝑝 ∈ {1, 2, 3}. For 𝑝 = 4 we observe a slower convergence rate
(about 1) for the two schemes. This can be explained by the fact that the
discrete convex set 𝑔

ℎ is nonconforming with its continuous analogue
𝑔 . A full a priori analysis including consistency is required to have
a better understanding of this problem. It will be explored in a future
work.

The static condensation procedure is an important element of the
HHO method. By using it, we expect to save some computation time.
In Table 3, we report the assembly and solve time used by the HHO
method. We consider CPU times with and without static condensation.
The assembly time includes the computation of all the matrices of
Sections 4.6–4.7 and the solve time includes all the time spent to solve

the linear systems. We observe that the static condensation procedure
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Fig. 6. Energy norm error for each refinement level. Left: FEM method. Right: HHO method.
Fig. 7. Solution at convergence for P2 FEM and mesh 3. Left: position of the membranes (𝑢1ℎ , 𝑢2ℎ). Right: discrete Lagrange multiplier (𝜆ℎ).
able 3
omputation time for HHO (in seconds) for 𝑝 = 3 with static condensation (SC) and
ithout static condensation (no SC).
Mesh HHO (no SC) HHO (SC)

Assembly Linear solve Total Assembly Linear solve Total

0 2.87 0.40 3.27 3.09 0.086 3.18
1 12.0 2.39 14.4 12.5 0.58 13.1
2 76.9 19.4 96.3 73.6 4.26 77.9
3 424 103 527 445 30 475
4 2940 739 3679 2945 213 3158

drastically diminishes the time needed to solve the linear systems es-
pecially for refined meshes. Moreover, the overcost needed to compute
the matrices (55)–(56) is negligible. We then recommend in practice
the use of static condensation.

5.2. A test case with a jump for the multiplier

In practice, the Lagrange multiplier often presents discontinuities.
In this second test case, we depict the lack of efficiency of high-
order methods in such situations. We consider the following analytical
solution,

𝑢1(𝑟) ∶=

{

0 if 𝑟 ⩽ 𝑅,
(𝑟2 − 𝑅2)2 if 𝑟 > 𝑅,

𝑢2(𝑟) ∶= 0, 𝜆(𝑟) ∶=

{

8𝑅2 if 𝑟 ⩽ 𝑅,
0 if 𝑟 > 𝑅,

where 𝑟2 ∶= (𝑥 − 0.5)2 + (𝑦 − 0.5)2. This triple is the solution of (41) for
the data 𝑓1 and 𝑓2 given by

𝑓1(𝑟) ∶=

{

−8𝑅2 if 𝑟 ⩽ 𝑅,
8𝑅2 − 16𝑟2 if 𝑟 > 𝑅,

𝑓2(𝑟) ∶=

{

8𝑅2 if 𝑟 ⩽ 𝑅,
0 if 𝑟 > 𝑅.

Once more, we use 𝜇1 ∶= 𝜇2 ∶= 1, 𝜀lin ∶= 10−12 and 𝑅 ∶= 1∕3. In
Fig. 7 we represent the shape of the discrete solution for the P FEM
2

73
discretization and for the mesh 3. This time, we obtain a nonnegative
discrete Lagrange multiplier 𝜆ℎ in the domain 𝛺 and a contact zone in
the area 𝑟 ⩽ 𝑅.

The number of required Newton-min iterations to reach conver-
gence is reported in Fig. 8. We observe that the HHO resolution with
static condensation is faster than the classical FEM resolution and the
gain factor in terms of Newton-min iterations is roughly equal to 2.5.

We reported in Fig. 9 the energy error of the two schemes. For 𝑝 = 1,
we observe similar results than the ones obtained in Section 5.1. For
𝑝 = 2, 3, the solution converges with a reduced rate (about 1.5). This
is a consequence of the fact that the solution is less regular compared
with the one used in Section 5.1. For 𝑝 = 4, the method converges with
a rate equal to 1 which agrees with the results of Section 5.1.

6. Conclusion

In this work, we presented a unified framework to study the numer-
ical approximation of several variational inequalities. We proposed to
discretize a mixed formulation associated to this framework and to use
a semismooth Newton algorithm to solve the arising nonlinear system.
We proved local convergence properties for this algorithm.

This framework was then applied to compare the behavior of the
finite element method (FEM) and the hybrid high-order (HHO) method
on the elliptic contact problem between two membranes. A static
condensation procedure was given to reduce the size of the system
arising for HHO. We considered two test cases: one with a very smooth
reference solution and another more realistic with a discontinuous
Lagrange multiplier. We observed that the HHO method is faster in
terms of semismooth Newton iterations and that the scheme converges
with optimal rate for orders 𝑝 = 1, 2, 3 but not for order 𝑝 = 4 even
for smooth solutions. This can be due to the nonconforming cones we
considered. We think that the HHO method is a viable alternative to

FEM if static condensation is used.
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Fig. 8. Number of Newton-min iterations for each refinement level. Left: FEM method. Right: HHO method.
Fig. 9. Energy norm error for each refinement level. Left: FEM method. Right: HHO method.
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