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We develop an a-posteriori-steered algorithm for the compositional liquid-gas flow with gas appearance/disap-
pearance in porous media. The discretization of our model is based on the backward Euler scheme in time and
the finite volume scheme in space. The resulting nonlinear system is solved via an inexact semismooth New-
ton method. The key ingredient for the a posteriori analysis are the discretization, linearization, and algebraic
flux reconstructions allowing to devise estimators for each error component. These enable to formulate criteria
for stopping the algebraic and linearization solver whenever the corresponding error do not affect significantly
the overall error. Numerical experiments are performed using the semismooth Newton-min algorithm and the
GMRES solver.

Model problem
We consider the compositional two-phase liquid-gas flow in (0,L)× (0, tF)
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Capillary pressure:
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Assumption 1. Water incompressible only present in liquid phase and gas slightly compressible.

Discretization and discrete complementarity
constraints

Numerical solution: U n := (U n
K)K∈Th, U n

K := (Sn
K,P

n
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n
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Time discretization: t0 = 0 < t1 < · · ·< tNt = tF = Nt∆t, with constant time step ∆t.
Space discretization: intervals of size h. Number of cells: Nsp.
Discretization of the component equations by finite volumes:
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Reformulation of complementarity constraints for the two-phase model
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Linearization by semismooth Newton method and
algebraic solver

Linearization at semismooth step k and at step i of any algebraic solver of component equations
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Numerical illustration
Nsp = 1000 t = 4.5×104year.
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Weak solution
X = L2((0, tF);H1(Ω)), Y = H1((0, tF);L2(Ω)), Z =

{
v ∈ L2((0, tF);L2(Ω)), v≥ 0

}
Assumption 2 (Weak formulation).
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The initial condition, the algebraic closure relation, and Darcy’s law hold.
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Reconstruction

Nsp = 3
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