IntroductionParareal algorithmCoarse and fine propagatorHybrid parareal algorithmNumerical experimentsExtension to the Boltzmann equationConclusion000

A hybrid parareal Monte-Carlo algorithm for parabolic problems

Jad Dabaghi, Yvon Maday, Andrea Zoia

CERMICS, École des Ponts ParisTech

Seminar CEA-DAM, November 22nd 2021

École des Ponts

ParisTech

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
•0						

Outline

1 Introduction

- 2 Parareal algorithm
- 3 Coarse and fine propagator
- 4 Hybrid parareal algorithm
- 5 Numerical experiments
- 6 Extension to the Boltzmann equation
- 7 Conclusion

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
00						

Motivation

Simplified model for neutron transport in nuclear reactors.

Motivation

Simplified model for neutron transport in nuclear reactors.

Boltzmann equation
$$\frac{1}{|\mathbf{v}|} \frac{\partial \psi}{\partial t}(\mathbf{r}, E, \Omega, t) + (\mathcal{A} - \mathcal{S} - \mathcal{F}) \psi(\mathbf{r}, E, \Omega, t) = Q(\mathbf{r}, \Omega, E, t)$$

Monte Carlo simulation Lux & Koblinger (1991)

- \rightarrow intrinsically parallel : one replica \iff one processor
- \rightarrow preferred in large dimension

Motivation

Simplified model for neutron transport in nuclear reactors.

Boltzmann equation
$$\frac{1}{|\mathbf{v}|} \frac{\partial \psi}{\partial t}(\mathbf{r}, E, \Omega, t) + (\mathcal{A} - \mathcal{S} - \mathcal{F}) \psi(\mathbf{r}, E, \Omega, t) = Q(\mathbf{r}, \Omega, E, t)$$

Monte Carlo simulation Lux & Koblinger (1991)

- \rightarrow intrinsically parallel : one replica \iff one processor
- \rightarrow preferred in large dimension

Can we speed-up a Monte Carlo resolution?

 \rightarrow time parallelization

Very complicated model: Start with a diffusion problem to understand the involved underlying mechanisms.

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
	00000					

Outline

Introduction

Parareal algorithm

- 3) Coarse and fine propagator
- 4 Hybrid parareal algorithm
- 5 Numerical experiments
- 6 Extension to the Boltzmann equation
- 7 Conclusion

Model problem

Time-dependent diffusion equation with dirichlet boundary conditions:

$$\begin{cases} \partial_t u - \mathcal{D}\Delta u = 0 & \text{in} \quad \Omega \times [0, T], \\ u(\cdot, 0) = u^0 & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial\Omega \times [0, T]. \end{cases}$$

Model problem

Time-dependent diffusion equation with dirichlet boundary conditions:

$$\begin{cases} \partial_t u - \mathcal{D}\Delta u = 0 & \text{in} \quad \Omega \times [0, T], \\ u(\cdot, 0) = u^0 & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial\Omega \times [0, T]. \end{cases}$$

Weak formulation: Find $u \in H_0^1(\Omega)$ such that

$$\langle \partial_t u, v \rangle_{H^{-1}(\Omega), H^1_0(\Omega)} + \mathcal{D} \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{dx} = 0 \quad \forall v \in H^1_0(\Omega) \quad \text{Well-posed problem}$$

Lions (1969), Dautrey & Lions (1985), Brezis (2011)

Parallelization of the time variable ! Lions, Maday, Turinici (2001)

Parallelization of the time variable ! Lions, Maday, Turinici (2001)

- Coarse sequential propagator \mathcal{G} with associated time step Δt
- Fine parallel propagator \mathcal{F} with associated time step δt , so that $\delta t \ll \Delta t$

Parallelization of the time variable ! Lions, Maday, Turinici (2001)

- Coarse sequential propagator \mathcal{G} with associated time step Δt
- Fine parallel propagator \mathcal{F} with associated time step δt , so that $\delta t \ll \Delta t$

Initialization : Compute a coarse solution at each time step n

 $\boldsymbol{U}_{k=0}^{n+1} := \mathcal{G}_{\Delta T}(\boldsymbol{U}_{k=0}^{n}), \text{ with } \boldsymbol{U}_{k=0}^{0} = \boldsymbol{U}^{0}$ k: parareal iteration

Parallelization of the time variable ! Lions, Maday, Turinici (2001)

- Coarse sequential propagator \mathcal{G} with associated time step Δt
- Fine parallel propagator \mathcal{F} with associated time step δt , so that $\delta t \ll \Delta t$

• Initialization : Compute a coarse solution at each time step *n*

 $oldsymbol{U}_{k=0}^{n+1} := \mathcal{G}_{\Delta T}(oldsymbol{U}_{k=0}^n), \quad ext{with} \quad oldsymbol{U}_{k=0}^0 = oldsymbol{U}^0 \qquad k: ext{ parareal iteration}$

• Compute parallel propagations: $\mathcal{F}_{\Delta T}(\boldsymbol{U}_k^n) \quad \forall n = 0 \cdots N_t - 1$

Parallelization of the time variable ! Lions, Maday, Turinici (2001)

- Coarse sequential propagator \mathcal{G} with associated time step Δt
- Fine parallel propagator \mathcal{F} with associated time step δt , so that $\delta t \ll \Delta t$

• Initialization : Compute a coarse solution at each time step *n*

 $oldsymbol{U}_{k=0}^{n+1} := \mathcal{G}_{\Delta T}(oldsymbol{U}_{k=0}^n), \quad ext{with} \quad oldsymbol{U}_{k=0}^0 = oldsymbol{U}^0 \qquad k: ext{ parareal iteration}$

- Compute parallel propagations: $\mathcal{F}_{\Delta T}(\boldsymbol{U}_k^n) \ \forall n = 0 \cdots N_t 1$
- Parareal updates

$$\underbrace{\boldsymbol{U}_{k}^{n} \approx u(t_{n})}_{\text{prediction}} \quad \underbrace{\boldsymbol{U}_{k+1}^{n+1} := \underbrace{\mathcal{G}_{\Delta T}(\boldsymbol{U}_{k+1}^{n})}_{\text{prediction}} + \underbrace{\mathcal{F}_{\Delta T}(\boldsymbol{U}_{k}^{n}) - \mathcal{G}_{\Delta T}(\boldsymbol{U}_{k}^{n})}_{\text{correction}} \quad \text{with} \quad \boldsymbol{U}_{k+1}^{0} := \boldsymbol{U}^{0}$$

• Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$

- Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$
- Ompute in parallel:

$$\mathcal{F}_{\Delta T}(u^0_{k=0})-\mathcal{G}_{\Delta T}(u^0_{k=0}),\ \mathcal{F}_{\Delta T}(u^1_{k=0})-\mathcal{G}_{\Delta T}(u^1_{k=0}),\ \mathcal{F}_{\Delta T}(u^2_{k=0})-\mathcal{G}_{\Delta T}(u^2_{k=0})$$

- Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$
- Ompute in parallel:

$$\mathcal{F}_{\Delta T}(u_{k=0}^0) - \mathcal{G}_{\Delta T}(u_{k=0}^0), \ \mathcal{F}_{\Delta T}(u_{k=0}^1) - \mathcal{G}_{\Delta T}(u_{k=0}^1), \ \mathcal{F}_{\Delta T}(u_{k=0}^2) - \mathcal{G}_{\Delta T}(u_{k=0}^2)$$

• Compute the prediction $\mathcal{G}_{\Delta T}(u_{k=1}^0)$

- Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$
- Ompute in parallel:

$$\mathcal{F}_{\Delta T}(u^0_{k=0}) - \mathcal{G}_{\Delta T}(u^0_{k=0}), \ \mathcal{F}_{\Delta T}(u^1_{k=0}) - \mathcal{G}_{\Delta T}(u^1_{k=0}), \ \mathcal{F}_{\Delta T}(u^2_{k=0}) - \mathcal{G}_{\Delta T}(u^2_{k=0})$$

- Sompute the prediction $\mathcal{G}_{\Delta T}(u_{k=1}^0)$
- Update: $u_{k=1}^1$ and $\mathcal{G}_{\Delta T}(u_{k=1}^1)$, $u_{k=1}^2$ and $\mathcal{G}_{\Delta T}(u_{k=1}^2)$, $u_{k=1}^3$

- Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$
- Ompute in parallel:

$$\mathcal{F}_{\Delta T}(u^0_{k=0}) - \mathcal{G}_{\Delta T}(u^0_{k=0}), \ \mathcal{F}_{\Delta T}(u^1_{k=0}) - \mathcal{G}_{\Delta T}(u^1_{k=0}), \ \mathcal{F}_{\Delta T}(u^2_{k=0}) - \mathcal{G}_{\Delta T}(u^2_{k=0})$$

- Sompute the prediction $\mathcal{G}_{\Delta T}(u_{k=1}^0)$
- Update: $u_{k=1}^1$ and $\mathcal{G}_{\Delta T}(u_{k=1}^1)$, $u_{k=1}^2$ and $\mathcal{G}_{\Delta T}(u_{k=1}^2)$, $u_{k=1}^3$
- Sompute in parallel:

$$\mathcal{F}_{\Delta T}(u_{k=1}^1) - \mathcal{G}_{\Delta T}(u_{k=1}^1), \quad \mathcal{F}_{\Delta T}(u_{k=1}^2) - \mathcal{G}_{\Delta T}(u_{k=1}^2), \quad \mathcal{F}_{\Delta T}(u_{k=1}^3) - \mathcal{G}_{\Delta T}(u_{k=1}^3)$$

- Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$
- Ompute in parallel:

$$\mathcal{F}_{\Delta T}(u_{k=0}^0) - \mathcal{G}_{\Delta T}(u_{k=0}^0), \ \mathcal{F}_{\Delta T}(u_{k=0}^1) - \mathcal{G}_{\Delta T}(u_{k=0}^1), \ \mathcal{F}_{\Delta T}(u_{k=0}^2) - \mathcal{G}_{\Delta T}(u_{k=0}^2)$$

- Sompute the prediction $\mathcal{G}_{\Delta T}(u_{k=1}^0)$
- Update: $u_{k=1}^1$ and $\mathcal{G}_{\Delta T}(u_{k=1}^1)$, $u_{k=1}^2$ and $\mathcal{G}_{\Delta T}(u_{k=1}^2)$, $u_{k=1}^3$
- Sompute in parallel:

 $\mathcal{F}_{\Delta T}(u_{k=1}^1) - \mathcal{G}_{\Delta T}(u_{k=1}^1), \quad \mathcal{F}_{\Delta T}(u_{k=1}^2) - \mathcal{G}_{\Delta T}(u_{k=1}^2), \quad \mathcal{F}_{\Delta T}(u_{k=1}^3) - \mathcal{G}_{\Delta T}(u_{k=1}^3)$

• Compute the prediction $\mathcal{G}_{\Delta T}(u_{k=2}^0)$

- Compute coarse approximations: $u_{k=0}^1$, $u_{k=0}^2$, $u_{k=0}^3$
- Ompute in parallel:

$$\mathcal{F}_{\Delta T}(u^0_{k=0}) - \mathcal{G}_{\Delta T}(u^0_{k=0}), \ \mathcal{F}_{\Delta T}(u^1_{k=0}) - \mathcal{G}_{\Delta T}(u^1_{k=0}), \ \mathcal{F}_{\Delta T}(u^2_{k=0}) - \mathcal{G}_{\Delta T}(u^2_{k=0})$$

- Sompute the prediction $\mathcal{G}_{\Delta T}(u_{k=1}^0)$
- Update: $u_{k=1}^1$ and $\mathcal{G}_{\Delta T}(u_{k=1}^1)$, $u_{k=1}^2$ and $\mathcal{G}_{\Delta T}(u_{k=1}^2)$, $u_{k=1}^3$
- Sompute in parallel:

 $\mathcal{F}_{\Delta T}(u_{k=1}^1) - \mathcal{G}_{\Delta T}(u_{k=1}^1), \quad \mathcal{F}_{\Delta T}(u_{k=1}^2) - \mathcal{G}_{\Delta T}(u_{k=1}^2), \quad \mathcal{F}_{\Delta T}(u_{k=1}^3) - \mathcal{G}_{\Delta T}(u_{k=1}^3)$

• Compute the prediction $\mathcal{G}_{\Delta T}(u_{k=2}^0)$

OUDDATE: $u_{k=2}^1$ and $\mathcal{G}_{\Delta T}(u_{k=2}^1)$ $u_{k=2}^2$ and $\mathcal{G}_{\Delta T}(u_{k=2}^2)$ $u_{k=2}^3$

Some remarks on parareal

- In general the two solvers are deterministic
- Parareal converges for parabolic problems Gander, Vandewalle (2007)
- Instability observed for hyperbolic problems Gander (2008)

Goal: Construct a hybrid parareal Monte Carlo algorithm for parabolic problems

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
		000000				

Outline

Introduction

- 2 Parareal algorithm
- Coarse and fine propagator
 - 4 Hybrid parareal algorithm
- 5 Numerical experiments
- 6 Extension to the Boltzmann equation
- 7 Conclusion

Coarse propagator

 \mathcal{T}_h : mesh of the domain Ω

- \mathcal{V}_h : Lagrange nodes, $\mathcal{V}_h^{\text{int}}$: interior nodes,
- $\mathcal{N}_{h}^{\text{int}}$: number of internal Lagrange nodes, N_{e} : number of elements

Coarse propagator

 \mathcal{T}_h : mesh of the domain Ω

 \mathcal{V}_h : Lagrange nodes, $\mathcal{V}_h^{\text{int}}$: interior nodes,

 $\mathcal{N}_{h}^{\text{int}}$: number of internal Lagrange nodes, N_{e} : number of elements

The finite element propagator

$$\begin{split} X_h^{\rho} &:= \left\{ v_h \in \mathcal{C}^0(\Omega); v_h|_{\mathcal{K}} \in \mathbb{P}_{\rho}(\mathcal{K}) \; \forall \mathcal{K} \in \mathcal{T}_h \right\} \subset \mathcal{H}^1(\Omega) \\ X_{0h}^{\rho} &:= \left\{ v_h \in \mathcal{C}^0(\Omega); v_h|_{\mathcal{K}} \in \mathbb{P}_{\rho}(\mathcal{K}) \; \forall \mathcal{K} \in \mathcal{T}_h, \; v_h|_{\partial\Omega} = 0 \right\} \subset \mathcal{H}_0^1(\Omega) \end{split}$$

Coarse propagator

 \mathcal{T}_h : mesh of the domain Ω

 \mathcal{V}_h : Lagrange nodes, $\mathcal{V}_h^{\text{int}}$: interior nodes,

 $\mathcal{N}_{h}^{\text{int}}$: number of internal Lagrange nodes, N_{e} : number of elements

The finite element propagator

$$egin{aligned} X_h^{\mathcal{P}} &:= \left\{ egin{aligned} v_h \in \mathcal{C}^0(\Omega); egin{aligned} v_h ert_K \in \mathbb{P}_{\mathcal{P}}(K) \ orall K \in \mathcal{T}_h
ight\} \subset H^1(\Omega) \ X_{0h}^{\mathcal{P}} &:= \left\{ egin{aligned} v_h \in \mathcal{C}^0(\Omega); egin{aligned} v_h ert_K \in \mathbb{P}_{\mathcal{P}}(K) \ orall K \in \mathcal{T}_h, \ egin{aligned} v_h ert_{\partial\Omega} = 0
ight\} \subset H_0^1(\Omega) \end{aligned} \end{aligned}$$

The discrete vector of unknowns : $U_h^n \in \mathbb{R}^{\mathcal{N}_h^{\text{int}}}$ satisfies $U_h^n = \mathcal{G}_{\Delta t}(U_h^{n-1})$ with

$$\mathcal{G}_{\Delta t}(\boldsymbol{U}_{h}^{n-1}) = [\mathbb{A}^{n}]^{-1} \times \boldsymbol{F}^{n-1}, \qquad \underbrace{[\mathbb{A}^{n}]^{-1}}_{\text{Stifface metric}} \in \mathbb{R}^{\mathcal{N}_{h}^{\text{int}}, \mathcal{N}_{h}^{\text{int}}}, \quad \boldsymbol{F}^{n-1} \in \mathbb{R}^{\mathcal{N}_{h}^{\text{int}}}$$

Stiffness matrix+mass matrix

The cell centered finite volume propagator

 $oldsymbol{U}_h^n := (oldsymbol{U}_K^n)_{K \in \mathcal{T}_h}, \hspace{1em} ext{ one value per cell and time step}$

The discrete vector of unknowns : $U_h^n \in \mathbb{R}^{N_e}$ satisfies $U_h^n = \mathcal{G}_{\Delta t}(U_h^{n-1})$ with

$$\mathcal{G}_{\Delta t}(\boldsymbol{U}_{h}^{n-1}) = [\mathbb{A}^{n}]^{-1} \times \boldsymbol{F}^{n-1}, \quad \underbrace{[\mathbb{A}^{n}]^{-1}}_{\text{Sparse}} \in \mathbb{R}^{N_{e},N_{e}}, \quad \boldsymbol{F}^{n-1} \in \mathbb{R}^{N_{e}}$$

IntroductionParareal algorithmCoarse and fine propagator
oco-ocoHybrid parareal algorithmNumerical experimentsExtension to the Boltzmann equationConclusion
oco-oco

The discontinuous Galerkin propagator

 $\mathcal{N}_h^{\text{int}}$: total number of local internal degrees of freedom.

Discontinuous Galerkin space:

$$egin{aligned} X_h^{p} &:= \left\{ v_h \in L^2(\Omega); v_h|_{\mathcal{K}} \in \mathbb{P}_p(\mathcal{K}) \; orall \mathcal{K} \in \mathcal{T}_h
ight\}
ot \subset \mathcal{H}^1(\Omega), \ X_{0h}^{p} &:= \left\{ v_h \in L^2(\Omega); v_h|_{\mathcal{K}} \in \mathbb{P}_p(\mathcal{K}) \; orall \mathcal{K} \in \mathcal{T}_h, v_h|_{\partial\Omega} = 0
ight\}
ot \subset \mathcal{H}^1_0(\Omega). \end{aligned}$$

The discrete vector of unknowns : $U_h^n \in \mathbb{R}^{\mathcal{N}_h^{\text{int}}}$ satisfies $U_h^n = \mathcal{G}_{\Delta t}(U_h^{n-1})$ with

$$\mathcal{G}_{\Delta t}(\boldsymbol{U}_{h}^{n-1}) = [\mathbb{A}^{n}]^{-1} \times \boldsymbol{F}^{n-1}, \quad [\mathbb{A}^{n}]^{-1} \in \mathbb{R}^{\mathcal{N}_{h}^{\text{int}}, \mathcal{N}_{h}^{\text{int}}}, \quad \boldsymbol{F}^{n-1} \in \mathbb{R}^{\mathcal{N}_{h}^{\text{int}}}$$

local matrix $[\mathbb{A}^n]_{\mathcal{K}}^{-1}$ = stiffness matrix + mass matrix + consistency and stability terms.

Principle: It gives an approximation of

$$\int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{K}} \underbrace{f}_{PDF}(\boldsymbol{x}) g(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

Principle: It gives an approximation of

$$\int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{K}} \underbrace{f}_{PDF}(\boldsymbol{x}) g(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

Consider *M* particles and sample a collection X_1, X_2, \dots, X_M of *M* points from the PDF *f*. Denote by $\omega_i \in \mathbb{R}_+$ their statistical weight.

Compute $g(X_1),...,g(X_M)$.

$$\int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{dx} = \overline{\mathbb{E}} \left[g(\boldsymbol{x}) \right]$$

Principle: It gives an approximation of

$$\int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{K}} \underbrace{f}_{PDF}(\boldsymbol{x}) g(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

Consider *M* particles and sample a collection X_1, X_2, \dots, X_M of *M* points from the PDF *f*. Denote by $\omega_i \in \mathbb{R}_+$ their statistical weight.

Compute $g(X_1),...,g(X_M)$.

$$\int_{K} u(\boldsymbol{x}) \, \mathrm{dx} = \overline{\mathbb{E}} \left[g(\boldsymbol{x}) \right].$$

Law of large numbers: $\lim_{M \to +\infty} \frac{1}{M} \sum_{i=1}^{M} g(X_i) = \int_{K} u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$

~

Principle: It gives an approximation of

$$\int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{K}} \underbrace{f}_{PDF}(\boldsymbol{x}) g(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

Consider *M* particles and sample a collection X_1, X_2, \dots, X_M of *M* points from the PDF *f*. Denote by $\omega_i \in \mathbb{R}_+$ their statistical weight.

Compute $g(X_1),...,g(X_M)$.

$$\int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{dx} = \overline{\mathbb{E}} \left[g(\boldsymbol{x}) \right].$$

Law of large numbers: $\lim_{M \to +\infty} \frac{1}{M} \sum_{i=1}^{M} g(X_i) = \int_{\mathcal{K}} u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$

0

Central limit Theorem:

error $\approx 1/\sqrt{M}$.

Sampling in 1D

Direct inversion of the cumulative for a given PDF:

Sampling in 1D

Direct inversion of the cumulative for a given PDF:

$$F: \Omega \to [0, 1]$$
 such that $F(x) := \int_{-\infty}^{x} f(u) \, \mathrm{d} u$.

Let $\xi_1 \sim \mathcal{U}([0, 1])$. Position of the particle: $X_i = F^{-1}(\xi_1)$.

Repeat *M* times the procedure.

Sampling in 1D

Direct inversion of the cumulative for a given PDF:

$$F:\Omega
ightarrow [0,1]$$
 such that $F(x):=\int_{-\infty}^{x}f(u)\,\mathrm{d} u.$

Let $\xi_1 \sim \mathcal{U}([0, 1])$. Position of the particle: $X_i = F^{-1}(\xi_1)$.

Repeat *M* times the procedure.

The table lookup method:

Probability each element: $\mathbb{P}([x_{i-1}, x_i]) = \int_{[x_{i-1}, x_i]} f(x) \, \mathrm{d}x$,

Cumulative function: $F_i : \Omega \to [0, 1], \ F_i = \sum_{j \le i} \mathbb{P}([x_{j-1}, x_j])$

Let $\xi_1 \sim \mathcal{U}([0, 1])$. Identify the two intervals such that $F_{i-1} \leq \xi_1 \leq F_i$.

Position of the particle:
$$X_i = \frac{(x_i - x_{i-1})\xi_1 - x_iF_{i-1} + x_{i-1}F_i}{F_i - F_{i-1}}$$

Repeat *M* times the procedure.

IntroductionParareal algorithmCoarse and fine propagator
occocoeHybrid parareal algorithmNumerical experimentsExtension to the Boltzmann equationConclusion
occocoe

Kernel Transport

 (\mathbf{x}, t) : position of the particle \mathbf{x} at time t, (\mathbf{x}', t') : position of the particle \mathbf{x}' at time t'Density transition kernel:

$$T(\mathbf{x}', t' \to \mathbf{x}, t) := \frac{1}{\sqrt{2\pi \mathcal{D}(t - t')}} \exp\left(-\frac{(\mathbf{x} - \mathbf{x}')^2}{2\mathcal{D}(t - t')}\right).$$

Pratical formula for the brownian motion:

$$T(\mathbf{X}^{n+\delta t}, t^n + \delta t) = T(\mathbf{X}^n, t^n) + \sqrt{2\mathcal{D}\delta t} \, \mathcal{S}_n \quad \text{where} \quad \mathcal{S}_n \sim \mathcal{N}(0, 1)$$

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
			00000			

Outline

Introduction

- 2 Parareal algorithm
- 3 Coarse and fine propagator
- 4 Hybrid parareal algorithm
 - 5 Numerical experiments
- 6 Extension to the Boltzmann equation
- 7 Conclusion

Hybrid parareal algorithm

Philosophy of the present work

Assume that 1000 processors are available.

Monte Carlo : We simulate 10^6 particules per processor. Precision : $1/\sqrt{10^9}$

1 replica = 1 processor

Required time for the propagation over a window ΔT : $\mathcal{F}_{\Delta T} = T/4$ seconds.

Total required time for each replica = T seconds \Rightarrow total time $\approx T$ secondes.

precision: $1/\sqrt{4 \times 10^9}$ but statistical precision was already achieved...

Parareal : We employ the excess processors to parallelize the time variable !

- 4 processors allocated to the time parallelization
- For each time observable we have 1000 processors. For each of these processors we simulate 10⁶ particles.

The hybrid algorithm

- Coarse propagator : Deterministic solver
- Fine propagator: Monte-Carlo solver: deterministic data + sampling + average

The numerical solution obtained for a replica $j \in [1, p]$ at parareal iteration k is denoted by $U_{k,i}^{n+1}$

$$oldsymbol{U}_k^{n+1} := rac{1}{oldsymbol{
ho}} \sum_{j=1}^{oldsymbol{
ho}} oldsymbol{U}_{k,j}^{n+1}$$

	个	
L	:	7

When $\boldsymbol{U}_{k,j}^{n+1}$ is computed, we need its statistical version for the computation of $\boldsymbol{U}_{k+1,j}^{n+2} = \mathcal{G}_{\Delta T}(\boldsymbol{U}_{k+1,j}^{n+1}) \times \frac{\mathcal{F}_{\Delta T}(\boldsymbol{U}_{k,j}^{n+1})}{\mathcal{G}_{\Delta T}(\boldsymbol{U}_{k,j}^{n+1})}$. Introduce bias in the Monte Carlo solver

Monte-Carlo solver.

Updating the statistical weights

Example: How avoid sampling $U_{k=2}^3 = \mathcal{G}_{\Delta T}(U_{k=2}^2) \times \frac{\mathcal{F}_{\Delta T}(U_{k=1}^2)}{\mathcal{G}_{\Delta T}(U_{k=1}^2)}$? We consider the statistical representation $\widetilde{\mathcal{F}_{\Delta T}}(U_{k=1}^2)$ before the average and we modify each of its particle weigths.

$$[\omega_{k=2}^3]_{i\in\mathcal{K}} = [\omega_{\widetilde{\mathcal{F}_{\Delta T}}(\boldsymbol{U}_{k=1}^2)}]_{i\in\mathcal{K}} \times \left(\frac{\boldsymbol{U}_{k=2}^3}{\mathcal{F}_{\Delta T}(\boldsymbol{U}_{k=1}^2)}\right)|_{\mathcal{K}}$$

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
				0000000		

Outline

Introduction

- 2 Parareal algorithm
- 3 Coarse and fine propagator
- 4 Hybrid parareal algorithm
- 5 Numerical experiments
 - 6 Extension to the Boltzmann equation
 - 7 Conclusion

Numerical experiments

Final simulation time: T = 10s. Diffusion coefficient: $D = 0.5m^2 \cdot s^{-1}$.

Coarse propagator: \mathbb{P}_1 FEM, $\Delta t = 2s$, **Fine propagator:** Monte-Carlo, $\delta t = 2 \times 10^{-4}s$.

Initial condition: $u_0(x) = \frac{1}{T}$, Number of particles: 10⁴, Number of replicas: 10³

Hybrid solution

CPU time and convergence

Hybrid parareal resolution										
Numbor	Number	Number								
of	of	of	CPU	CPU	Gain	Gain				
Drocossors	replicas for each	particles	time	time	factor	factor				
	parallel-in-time	for one	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 1	<i>k</i> = 2				
	propagation	replica <i>j</i>								
5	10 ²	10 ⁵	335.76 s	537.16 s	4.92	3.04				
5	10 ³	10 ⁴	33.05 s	53.1 s	4.96	3.09				
5	104	10 ³	3.39 s	5.49 s	4.97	3.07				
5	10 ⁵	10 ²	0.35 s	0.58 s	5.08	3.02				

A second test case

- **Final simulation time:** T = 14s.
- **Deterministic propagator:** \mathbb{P}_1 finite element, $\Delta t = 2s$.
- **Fine propagator:** Monte-Carlo, $\delta t = 2 \times 10^{-4} s$.
- Diffusion coefficient MC: $\mathcal{D} = 0.5 m^2 \cdot s^{-1}$
- Diffusion coefficient FEM: $D = 0.48m^2 \cdot s^{-1}$
- Initial condition: $u_0(x) = \frac{1}{L} \left(1 + \cos(\frac{\pi x}{L}) \right).$
- Number of particles: 10⁵, Number of replicas: 10²

CPU time and convergence

A third test case

- **Final simulation time:** T = 50s.
- **Deterministic propagator:** \mathbb{P}_1 finite element, $\Delta t = 2s$.
- **Fine propagator:** Monte-Carlo, $\delta t = 2 \times 10^{-3} s$.
- Diffusion coefficient MC: $\mathcal{D} = 0.25 m^2 \cdot s^{-1}$
- Diffusion coefficient FEM: $D = 0.25m^2 \cdot s^{-1}$
- Initial condition: $u_0(x) = \frac{1}{L}$.
- Number of particles: 10⁵, Number of replicas: 10³

Convergence

Simulate longer times

J. DABAGHI, Y. MADAY, A. ZOIA, A hybrid parareal Monte-Carlo algorithm for parabolic problems. IN REVISION (2021)

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
					00000	

Outline

Introduction

- 2 Parareal algorithm
- 3 Coarse and fine propagator
- 4 Hybrid parareal algorithm
- 5 Numerical experiments
- 6 Extension to the Boltzmann equation
 - Conclusion

Model problem

monokinetic 1D Boltzmann model

$$\begin{aligned} \frac{\partial \psi_+}{\partial t}(x,t) &+ \frac{\partial \psi_+}{\partial x}(x,t) + \Sigma_t \psi_+(x,t) = \left(\frac{\Sigma_s}{2} + \nu \frac{\Sigma_f}{2}\right) \left(\psi_+(x,t) + \psi_-(x,t)\right) \\ \frac{\partial \psi_-}{\partial t}(x,t) &- \frac{\partial \psi_-}{\partial x}(x,t) + \Sigma_t \psi_-(x,t) = \left(\frac{\Sigma_s}{2} + \nu \frac{\Sigma_f}{2}\right) \left(\psi_+(x,t) + \psi_-(x,t)\right). \end{aligned}$$

• unknowns : ψ_+ and ψ_- : angular fluxes in direction +1 and -1

• $\Sigma_t = \Sigma_s + \Sigma_a + \Sigma_f$ (cross sections)

• ν : average number of neutrons emitted per fission

Extension to the Boltzmann equation Conclusion

Fine propagator : The Monte Carlo algorithm

Sampling the initial guess

- → Position of particles (direct inversion of cumulative, table lookup, rejection...)
- \rightarrow direction of particles. Select $\xi \sim \mathcal{U}([0, 1])$. If $\xi \leq p^+$, $\omega_i = +1$. Otherwise, $\omega_i = -1$.

Sampling the initial guess

- \rightarrow Position of particles (direct inversion of cumulative, table lookup, rejection...)
- \rightarrow direction of particles. Select $\xi \sim \mathcal{U}([0, 1])$. If $\xi \leq p^+$, $\omega_i = +1$. Otherwise, $\omega_i = -1$.

Sampling the flights

Probability of collision between s > 0 and s + ds > 0 is $p(s)ds = \sum_t e^{-\sum_t s} ds$. The path is obtained by the direct inversion of the cumulative $s = -\frac{1}{\sum_t} \ln(1 - \xi)$ with $\xi \sim \mathcal{U}([0, 1])$

Sampling the initial guess

- \rightarrow Position of particles (direct inversion of cumulative, table lookup, rejection...)
- \rightarrow direction of particles. Select $\xi \sim \mathcal{U}([0, 1])$. If $\xi \leq p^+$, $\omega_i = +1$. Otherwise, $\omega_i = -1$.

Sampling the flights

Probability of collision between s > 0 and s + ds > 0 is $p(s)ds = \sum_t e^{-\sum_t s} ds$. The path is obtained by the direct inversion of the cumulative $s = -\frac{1}{\sum_t} \ln(1 - \xi)$ with $\xi \sim \mathcal{U}([0, 1])$

Collision

 $\xi_1 \sim \mathcal{U}([0,1])$. If $\xi_1 \leq \frac{\Sigma_s}{\Sigma_t}$ scattering event \Rightarrow sample a new direction and flight. If $\frac{\Sigma_s}{\Sigma_t} < \xi_1 \leq \frac{\Sigma_s}{\Sigma_t} + \frac{\Sigma_a}{\Sigma_t}$ absorption event \rightarrow the neutron is dead. If $\xi_1 > \frac{\Sigma_s}{\Sigma_t} + \frac{\Sigma_a}{\Sigma_t}$ fission event. The mother neutron is dead and $\overline{\nu}$ child neutrons are emitted. New directions and flights have to be sampled for each child neutrons.

Sampling the initial guess

- \rightarrow Position of particles (direct inversion of cumulative, table lookup, rejection...)
- \rightarrow direction of particles. Select $\xi \sim \mathcal{U}([0, 1])$. If $\xi \leq p^+$, $\omega_i = +1$. Otherwise, $\omega_i = -1$.

Sampling the flights

Probability of collision between s > 0 and s + ds > 0 is $p(s)ds = \sum_t e^{-\sum_t s} ds$. The path is obtained by the direct inversion of the cumulative $s = -\frac{1}{\sum_t} \ln(1 - \xi)$ with $\xi \sim \mathcal{U}([0, 1])$

Collision

 $\xi_1 \sim \mathcal{U}([0,1])$. If $\xi_1 \leq \frac{\Sigma_s}{\Sigma_t}$ scattering event \Rightarrow sample a new direction and flight. If $\frac{\Sigma_s}{\Sigma_t} < \xi_1 \leq \frac{\Sigma_s}{\Sigma_t} + \frac{\Sigma_a}{\Sigma_t}$ absorption event \rightarrow the neutron is dead. If $\xi_1 > \frac{\Sigma_s}{\Sigma_t} + \frac{\Sigma_a}{\Sigma_t}$ fission event. The mother neutron is dead and $\overline{\nu}$ child neutrons are emitted. New directions and flights have to be sampled for each child neutrons.

Monte Carlo computation

Compute an approximation of $\int_{\Omega} (\psi_+ + \psi_-) (x, t) \, dx = \int_{\Omega} \Phi(x, t) \, dx$

Coarse propagator : A reaction-diffusion model

$$\frac{\partial \phi}{\partial t}(x,t) - \mathcal{D}\frac{\partial^2 \phi}{\partial x^2}(x,t) + \Sigma_a \phi(x,t) + (\nu - 1)\Sigma_f \phi(x,t) = 0 \quad \text{in} \quad \Omega \times [0,T]$$
$$\phi(x,0) = \phi^0(x) \quad \text{in} \quad \Omega$$
$$\phi(x,t) = 0 \quad \text{on} \quad \partial\Omega \times [0,T]$$

Cell-centered finite volume method: a single constant value per cell: $\forall 1 \le n \le N_t - 1$ we let

$$\Phi^n := (\phi_K^n)_{K \in \mathcal{T}_h} \in \mathbb{R}^{N_e} \quad \phi_K^n := \frac{1}{|K|} \int_K \phi^n(x) \, dx$$

By integration over the element K and using the Green's formula we obtain

$$\frac{|K|}{\Delta t_n}\phi_K^n + \mathcal{D}\sum_{\sigma\in\mathcal{E}_K}\mathfrak{F}_{K,\sigma}^n - |\sigma|\frac{\phi_K^n}{d_{K\sigma}} + \Sigma_a\phi_K^n + (\nu-1)\Sigma_f\phi_K^n = Q_K^{n-1} \quad \forall K\in\mathcal{T}_h.$$

 Φ^n is solution to a linear system of equations

Numerical experiments

 $\Sigma_a = \Sigma_f = 0$

n = 4

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
					000000	

n = 80

J. DABAGHI, Y. MADAY, A. ZOIA, A hybrid parareal Monte-Carlo algorithm for the Boltzmann equation in neutronics. IN PREPARATION (2021)

Introduction	Parareal algorithm	Coarse and fine propagator	Hybrid parareal algorithm	Numerical experiments	Extension to the Boltzmann equation	Conclusion
						•00

Outline

Introduction

- 2 Parareal algorithm
- 3 Coarse and fine propagator
- 4 Hybrid parareal algorithm
- 5 Numerical experiments
- 6 Extension to the Boltzmann equation
- 7 Conclusion

Conclusion

- We devised for the diffusion equation a hybrid parareal algorithm.
- Our approach reduces the CPU time of a Monte-Carlo simulation.

Ongoing work:

• Extension to the Boltzmann equation in neutronics with absorption and fission

Thank you for your attention!

