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Monte Carlo simulation Lux & Koblinger (1991)

Boltzmann equation (rLE,Q )+ (A-S—F)u(r,E,Q,t) = Q(r,Q, E )

— intrinsically parallel : one replica <= one processor
— preferred in large dimension

Can we speed-up a Monte Carlo resolu-
tion?
— time parallelization

Very complicated model: Start with a
diffusion problem to understand the involved
underlying mechanisms.
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ou—DAu=0 in Qx][0,T],
u=>0 on 9Q x [0, T].
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Model problem

Time-dependent diffusion equation with dirichlet boundary conditions:

u(-,0) = u° in Q

ou—DAu=0 in Qx][0,T],
u=>0 on 9Q x [0, T].

Weak formulation: Find u € H}(2) such that
(O, V) y-1(9) (@) + D/ Vu-Vvdx=0 VveH](Q) Well-posed problem
’ Q

Lions (1969), Dautrey & Lions (1985), Brezis (2011)
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Parallelization of the time variable ! Lions, Maday, Turinici (2001)

@ Coarse sequential propagator G with associated time step At

@ Fine parallel propagator F with associated time step ¢, so that 6t < At
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Parareal algorithm

Parallelization of the time variable ! Lions, Maday, Turinici (2001)

@ Coarse sequential propagator G with associated time step At
@ Fine parallel propagator F with associated time step ¢, so that 6t < At
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@ Initialization : Compute a coarse solution at each time step n
UMl = Gat(Uly), with U_y=U°  k: parareal iteration

@ Compute parallel propagations: Far(U]) Vn=0---N; — 1
@ Parareal updates

U,'(7 ~ Uu(th) Ugjr_; = gAT(U;?JH)-i-JTAT(U;?) — QAT(U[J) with U/(<)+1 = U°

prediction correction
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TS 2 3
@ Compute coarse approximations: u}_,, Uuf_o, Up_,
© Compute in parallel:

Far(Ul_g) = Gat(Ul_g), Far(ui_g) — Gar(Ul_q), Far(UP_y) — Gar(UP_y)

@ Compute the prediction Gar(u?_,)

Q Update: |u]_, |and Gar(u]l_,), |U7_, |and GaT(LZ_,), | U3_,
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lllustration of the procedure n =3 and k =2

@ Compute coarse approximations: u}_,, u2_,, u3_,
© Compute in parallel:

Far(U)—o) = Gat(Ui—o), Fat(Ui—g) — Gat(Ulg), Far(Uf_o) — Gat(Ui_o)
@ Compute the prediction Gar(u?_,)

Q Update: |u]_, |and Gar(u]l_,), |U7_, |and GaT(LZ_,), | U3_,

© Compute in parallel:

Far(Ui_q) = Gat(ul 1), Far(UPy) — Gat(UP_y), Far(Ui_y) —Gat(Ul_y)

@ Compute the prediction Gar(u?_,)

@ Update: |u]_,| and Gat(ul_,) |U2_,| and Gar(v?_,) |ul_,
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Some remarks on parareal

@ In general the two solvers are deterministic
@ Parareal converges for parabolic problems Gander, Vandewalle (2007)

© Instability observed for hyperbolic problems Gander (2008)

Goal: Construct a hybrid parareal Monte Carlo algorithm for parabolic problems
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Th: mesh of the domain Q
Vp : Lagrange nodes, Vin: interior nodes,
N number of internal Lagrange nodes, N, : number of elements
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Th: mesh of the domain Q

Vp : Lagrange nodes, Vin: interior nodes,

N number of internal Lagrange nodes, N, : number of elements
The finite element propagator
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X, = {v,, € CO(Q); Vilk € Po(K) YK € Th, Vilog = o} c H(Q)
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Coarse propagator

Th: mesh of the domain Q

Vp : Lagrange nodes, Vin: interior nodes,

N number of internal Lagrange nodes, N, : number of elements
The finite element propagator

XP = {vh € CO(Q); vilk € Bp(K) VK € T,,} c H'(Q)
Xby = { vh € C2(Q); vhl € Po(K) VK € Th, vhlon = 0} € HY(Q)
The discrete vector of unknowns : UJ € RVi" satisfies U7 = Gar(U7~") with

Gar(Up~") = [A" T x FT, (AT e RV Pt e R
N——

Stiffness matrix+mass matrix
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The cell centered finite volume propagator
Uj .= (UR)keT,,» one value per cell and time step
The discrete vector of unknowns : U7 € RM satisfies U = Ga; (U7~ with

gAt(U;7171) — [An]_1 % Fn_1, [An]_1 c RNE,NE’ Fn—1 c ]RNe
——

Sparse
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The discontinuous Galerkin propagator
Nnt: total number of local internal degrees of freedom.

Discontinuous Galerkin space:
XP = {vh € L2(Q): vhlx € Po(K) VK € Th } ¢ H'(Q),
XP, = {vh € L2(Q); Vhlk € Pp(K) YK € Th, Vhlog = o} ¢ HH(Q)
The discrete vector of unknowns : UJ € RV satisfies Ul = Gar (U~ ") with
gAt(U;;’_1) _ [An]q x Fn=1, [An]q c RN,","‘,N,","" Fr-1 c RV

local matrix [A”];1 = stiffness matrix + mass matrix + consistency and stability terms.
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Principle: It gives an approximation of

/Ku(x)dx:/K\f/(x)g(x)dx.
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Principle: It gives an approximation of

/Ku(x)dx:/K\f/(x)g(x)dx.

PDF

Consider M particles and sample a collection Xj, Xo, - -
Denote by w; € R, their statistical weight.

Compute g(X1),....9(Xu)-

-, Xy of M points from the PDF f.



Coarse and fine propagator
[e]e]ele] lele]

Fine propagator : Monte-Carlo

Principle: It gives an approximation of

/Ku(x)dx:/K\f/(x)g(x)dx.

PDF

Consider M particles and sample a collection Xi, Xo, - - - , Xjy of M points from the PDF f.
Denote by w; € R, their statistical weight.

Compute g(X1),....9(Xu)-

/ u(x)dx = E[g(x)].
K

M
_ 1
Law of large numbers: |im i Zg(X,-) = /Ku(x) dx.

M——+o0
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Fine propagator : Monte-Carlo

Principle: It gives an approximation of

/Ku(x)dx:/K\f/(x)g(x)dx.

PDF

Consider M particles and sample a collection Xi, Xo, - - - , Xjy of M points from the PDF f.
Denote by w; € R, their statistical weight.

Compute g(X1),....9(Xu)-

M
_ 1
Law of large numbers: MiTw i ; a(Xi) = /K u(x)dx.

Central limit Theorem:

error ~ 1/vVM.
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Sampling in 1D

Direct inversion of the cumulative for a given PDF:
F:Q—[0,1] suchthat F(x):= [*_ f(u)du.
Let & ~ U([0, 1]). Position of the particle: X; = F~'(&).

Repeat M times the procedure.
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Sampling in 1D

Direct inversion of the cumulative for a given PDF:
F:Q—[0,1] suchthat F(x):= [*_ f(u)du.

Let & ~ U([0, 1]). Position of the particle: X; = F~'(&y).

Repeat M times the procedure.

The table lookup method:

Probability each element: P([x;_1, X/]) = f[x,,1,x,] f(x)dx,

Cumulative function: £ : Q — [0,1], Fj =3, P([xj—1, Xj])

Let &1 ~ U([0, 1]). Identify the two intervals such that F;_{ < & < Fi.

(Xi = Xi—1) & — XiFi1 + Xi1Fi
Fi— Fi_1

Position of the particle: X; =

Repeat M times the procedure.
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Kernel Transport

(x, t) : position of the particle x at time t, (x/,t’) : position of the particle x” at time t/
Density transition kernel:
X — X/)Z
T E X t) = e (_().
( ) 27D (t—t) "\ ep(t- 1)
Pratical formula for the brownian motion:

T(X" U " 4 6t) = T(X", t") + V2Dét S, where S, ~ N(0,1)

D < X" {6t
®eg0 © &0 oo [ 3 ] e o o
X MEXS 0.. eo e 0.. ..
®ee o eee o r e Ki o °
e e egl00 0 o ot e o K20 @
0.0.0.0..0%0000 °
® ¢ % o0, ,0 K- oo .o
) ° e N3 K
0.."..: :.: e® o : :.4.
o0 o0
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Hybrid parareal algorithm

Philosophy of the present work

Assume that 1000 processors are available.

Monte Carlo : We simulate 108 particules per processor. Precision : 1/%@
1 replica = 1 processor

Required time for the propagation
& \\@)/@ over a window AT: Fatr = T/4
XV seconds.
I | | |
] | | |

Total required time for each
replica = T seconds = total time

Ty, T T T T, ~ T secondes.
Assume now that 4000 processors are available.

precision: 1/v4 x 109 but statistical precision was already achieved...
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Parareal : We employ the excess processors to parallelize the time variable !

@ 4 processors allocated to the time parallelization

@ For each time observable we have 1000 processors. For each of these processors we
simulate 108 particles.

| in parallel | in parallel | in parallel | in parallel PreCiSion .
o S - Vies
D :
h CPU cost :
~ T _ , _
® ® ® T=-—xk with k<4
Ty T, Ty 4
Other possibility: simulate a Borwnian motion on an interval {O, 7 T} :
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The hybrid algorithm

@ Coarse propagator : Deterministic solver

@ Fine propagator: Monte-Carlo solver: deterministic data + sampling + average

The numerical solution obtained for a replica j € [1, p] at parareal iteration k is denoted by

n+1
Ue;

AN

1P
=y
P

When U,Q’j“ is computed, we need its statistical version for the com-

. 2 1 ‘FAT(UI?/+1) L
putation of U7, = GaT(U[{ ;) x —————*=—. Introduce bias in the
, I Gar(up)

Monte-Carlo solver.
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Updating the statistical weights

]'—AT(UE:1)
o gAT(UE:1)
representation Fa7(U2_,) before the average and we modify each of its particle weigths.

Example: How avoid sampling Uﬁzz = QAT(U,EZZ) X ? We consider the statistical

Us
31— [ — . k=2
[szz]/eK [w}—AT(Ufa)]IEK . (J'—AT(UE_1)> I

o, = (Ui ol

- 1

w123 ¢ Ok, X w123 b Far(U )l
Wa5,6 < Ok, XWas6 [Uillk,

K> = [Far(UL_)llx,
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Numerical experiments

Numerical experiments
©0000000

Final simulation time: T = 10s. Diffusion coefficient: D = 0.5m? - s~ '.

Coarse propagator: P; FEM, At = 2s, Fine propagator: Monte-Carlo, 5t = 2 x 10~ 4s.

Initial condition: uy(x) = }, Number of particles: 10*, Number of replicas: 10°

[e2]
T

Solution
(3]

- n
T T

o

IS
T

w
T

Spatial domain [m]

x1073 o g x10°
—e— Coarse FEM solution —e—Coarse FEM solution
T Monte-Carlo error T Monte-Carlo error
5L o6 |
sTzTzrr_
== = 4l |
. c L
i S =T =
- ER = ]
= 5} = =
= [%] = s
= ol = = ]
- - 1L = - |
. . . 0 .
0 2 3 4 0 1 2 3 4 5

Spatial domain [m]
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Hybrid solution

-3
6 X 10 ‘ 103
—e— Coarse solution U}_ 39 | ' i " 1
—¢— Hybrid solution U}_, : —e— Exact solution )
5¢ 1 38 —4—Hybrid solution UJ_, | |
—=— Hybrid solution U}_,
. 3.7 I Monte-Carlo error
3.6 i
c
= | §35¢ ]
3 5
Q 534 r —
@ w
2r , 33 i
32 i
T i 31 r i
3+ i
0v 1 1 1 1 9 L L L 1 Il Il 1
0 1 2 3 4 5 2.4 2.6 2.8 3 3.2 3.4 3.6

Spatial domain [m] Spatial domain [m]
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CPU time and convergence

Hybrid parareal resolution
Number Number Number
of of CPU CPU Gain | Gain
of . . . .
(0CESSONS replicas for each | particles time time factor | factor
P - parallel-in-time for one k=1 k=2 k=1 k=2
time parallelization . o
propagation replica j
5 102 10° 335.76s | 537.16s | 4.92 | 3.04
5 10° 104 33.05s 53.1s 496 | 3.09
5 10% 108 3.39s 549s | 497 | 3.07
5 10° 102 0.35s 0.58s 5.08 | 3.02
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A second test case

Final simulation time: 7 = 14s.

Deterministic propagator: P, finite element, At = 2s.
Fine propagator: Monte-Carlo, 6t = 2 x 10~*s.
Diffusion coefficient MC: D = 0.5m? - s~

Diffusion coefficient FEM: D = 0.48m? - s~

Initial condition: uo(x) = 1[ (1+ cos(LLX)).

Number of particles: 10°, Number of replicas: 10
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CPU time and convergence

x10°8 N 2000 }
1.3 —e— Full-Monte Carlo resolution
—4— Hybrid parareal resolution
1.2
1500 |
)
s 1.1 =
2 2
&8 ! o
1000 |

0.9 l—e—Exact solution
—k— Coarse solution U,Zil,
—— Hybrid solution U}Z:l
08 [|—e— Hybrid solution U;Z:g
T Monte-Carlo error

! - 500 L s v
3.7 3.8 3.9 4 41 4.2 0 20 40 60 80 100
Spatial domain [m] Number of batch
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A third test case

Final simulation time: 7 = 50s.

Deterministic propagator: P, finite element, At = 2s.
Fine propagator: Monte-Carlo, 6t =2 x 10~ 3s.
Diffusion coefficient MC: D = 0.25m? . s~

Diffusion coefficient FEM: D = 0.25m? - s~
1

Initial condition: uy(x) = I

Number of particles: 10°, Number of replicas: 103



Convergence
, x107
| ——Exact solution
O8d_4— Hybrid solution U2,
—a— Hybrid solution U?,
1.5 —=—Hybrid solution U,
—e— Hybrid solution U?,
S —— Hybrid solution U
5 1
o
9]
0.5

Spatial domain [m]

Parareal error

Numerical experiments
00000000

L

10°° :
0 2

4
Parareal iterations
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Simulate longer times

300 T T T 4 ; : " .
—— hybrid resolution
250 r g ;
235
©
200 F 5
2 =
=150 3 *
2 o
5 CE? 8
100 ¢ —
o
HYB S 25
4 Qo
50 g
z
0 : : : 2 : : :
0 10 20 30 40 8 16 24 32
Time step Time step

@ J. DABAGHI, Y. MADAY, A. ZOIA, A hybrid parareal Monte-Carlo algorithm for parabolic problems. IN REVISION (2021)
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Extension to the Boltzmann equation
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Model problem

monokinetic 1D Boltzmann model

et + G+ Tt = (5 05 ) )+ v-(c,t)
o o

Pt = G+ Tt = (G 05 e + v (),

@ unknowns : ¢4 and ¢_ : angular fluxes in direction +1 and —1
@ Y;=3:+ 25+ Xf(cross sections)

@ v : average number of neutrons emitted per fission
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Fine propagator : The Monte Carlo algorithm

@ Sampling the initial guess
— Position of particles (direct inversion of cumulative, table lookup, rejection...)
— direction of particles. Select ¢ ~ U ([0, 1]). If ¢ < p™, w; = +1. Otherwise, w; = —1.
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Fine propagator : The Monte Carlo algorithm

@ Sampling the initial guess
— Position of particles (direct inversion of cumulative, table lookup, rejection...)
— direction of particles. Select ¢ ~ U ([0, 1]). If ¢ < p™, w; = +1. Otherwise, w; = —1.
© Sampling the flights
Probability of collision between s > 0 and s + ds > 0 is p(s)ds = ¥;e *t°ds. The path
is obtained by the direct inversion of the cumulative s = —zlt In(1 — &) with & ~ U ([0, 1])
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Fine propagator : The Monte Carlo algorithm

@ Sampling the initial guess
— Position of particles (direct inversion of cumulative, table lookup, rejection...)

— direction of particles. Select ¢ ~ U ([0, 1]). If ¢ < p™, w; = +1. Otherwise, w; = —1.
© Sampling the flights

Probability of collision between s > 0 and s+ ds > 0 is p(s )ds = Y6 *t5ds. The path
is obtained by the direct inversion of the cumulative s = — s In(1 — &) with & ~ U ([0, 1])

© Collision
U([0,1]). If §1 < é scattering event = sample a new direction and flight. If
):5 <H<E+E absorptlon event — the neutron is dead.

If 51 > ZS + za f|SS|on event. The mother neutron is dead and 7 child neutrons are
emitted. New directions and flights have to be sampled for each child neutrons.
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Fine propagator : The Monte Carlo algorithm

@ Sampling the initial guess

— Position of particles (direct inversion of cumulative, table lookup, rejection...)

— direction of particles. Select ¢ ~ U ([0, 1]). If ¢ < p™, w; = +1. Otherwise, w; = —1.
© Sampling the flights

Probability of collision between s > 0 and s+ ds > 0 is p(s )ds = Y6 *t5ds. The path
is obtained by the direct inversion of the cumulative s = — s In(1 — &) with & ~ U ([0, 1])

© Collision
U([0,1]). If §1 < é scattering event = sample a new direction and flight. If
):5 <H<E+E absorptlon event — the neutron is dead.

If 51 > ZS + za f|SS|on event. The mother neutron is dead and 7 child neutrons are
emitted. New directions and flights have to be sampled for each child neutrons.

© Monte Carlo computation
Compute an approximation of [, (Y4 +v_) (x,t) dx = [ (x, t) dx
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Coarse propagator : A reaction-diffusion model

(x,1) — D;f(x )+ Xao(x, t)+ (v —1)Esp(x, 1) =0 in Qx[0,T]
¢(x,0)=¢°(x) in Q
#(x,t)=0 on 00Qx]0, T[
Cell-centered finite volume method: a single constant value per cell: V1 < n < N; —1 we
let

n n n 1 n
= (Pk)ker, ER™ ok = |K|/K¢ (x) dx

By integration over the element K and using the Green’s formula we obtain
K| Pk 1
Atn¢K+DZsKU \d—m+za¢ﬂ+(u—1)zf¢ﬂzo,"< VK € Th.

o€k

®" is solution to a linear system of equations
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Numerical experiments

n=4
0.35 i i - o
—— t t. « T T
+H);?)Crid5(s)ol;ultoizn k=1 015¢— e Hybri 1
03 | id solution k=1
—a— Hybrid solution k=2
—a— Hybrid solution k=3
0.25 —#— Hybrid solution k=4[]
g 0.1 ]
_5 0.2 1 g
2 g
O 4
83 0.15 =
~ |
0.1 J 0.05 1
0.05 ]
0 sisle * 0 ' '
0 1 2 3 4 5 1 2 3 4 5

Spatial domain [m] Parareal iterations k
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n =380
» 0.04 :
0.08 ‘ —e— Exact solution o— L>(Q) error
007 - —4— Hybrid solution k=1 0.035 t 1
. —=— Hybrid solution k=3
0.06 —a— Hybrid solution k=7 0.03
. —&— Hybrid solution k=10
0.05 0.025 r
5 5
5 0.04 5 002
o
0.02 0.01
0.01 0.005 r
0 taipl s O L L
0 1 2 3 4 5 0 5 10 15
Spatial domain [m] Parareal iterations k

@ J. DABAGHI, Y. MADAY, A. ZOIA, A hybrid parareal Monte-Carlo algorithm for the Boltzmann equation in neutronics. IN
PREPARATION (2021)
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Conclusion

@ We devised for the diffusion equation a hybrid parareal algorithm.

@ Our approach reduces the CPU time of a Monte-Carlo simulation.

Ongoing work:
@ Extension to the Boltzmann equation in neutronics with absorption and fission
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