A posteriori analysis

Numerical experiments

Conclusion 000

A posteriori error estimates and stopping criteria for a two-phase flow with nonlinear complementarity constraints

Ibtihel Ben Gharbia, Jad Dabaghi, Vincent Martin, Martin Vohralík

Inria Paris & Université Paris-Est

IFPEN-INRIA meeting, November, 26th, 2018

Introd	uction
•0	

A posteriori analysis

Numerical experiments

Conclusion 000

Outline

- 2 Model problem and its discretization
- 3 A posteriori analysis
- 4 Numerical experiments
- 5 Conclusion

Introd	uction
00	

A posteriori analysis

Numerical experiments

Conclusion

Introduction

Storage of radioactive wastes

Can we estimate each error component? Can we reduce the computational cost? Model: System of PDE's with complementarity constraints

 $\mathcal{A}(\boldsymbol{\textit{U}})=0$

 $\mathcal{K}(\boldsymbol{U}) \geq 0, \ \boldsymbol{\mathcal{G}}(\boldsymbol{U}) \geq 0, \ \mathcal{K}(\boldsymbol{U})^{T} \boldsymbol{\mathcal{G}}(\boldsymbol{U}) = 0.$

Space/Time discretisation: Finite volumes/Backward Euler scheme

 $S^n(U_h^n) = 0$ U_h^n : unknowns

Resolution: semismooth Newton

$$\mathbb{A}^{n,k-1}\boldsymbol{U}_h^{n,k,i} + \boldsymbol{R}_h^{n,k,i} = \mathbb{F}^{n,k-1}$$

> A posteriori error estimates

Introd	

posteriori analysis

Numerical experiments

Conclusion 000

Outline

2 Model problem and its discretization

3 A posteriori analysis

4 Numerical experiments

5 Conclusion

A posteriori analysis

Numerical experiments

Conclusion

Compositional two-phase flow with phase transition

$$\begin{array}{l} \partial_{t} l_{w} + \boldsymbol{\nabla} \cdot (\rho_{w}^{l} \mathbf{q}^{l} - \mathbf{J}_{h}^{l}) = \boldsymbol{Q}_{w}, & \mathbf{Unknowns:} S^{l}, P^{l}, \chi_{h}^{l} \\ \partial_{t} l_{h} + \boldsymbol{\nabla} \cdot (\rho_{h}^{l} \mathbf{q}^{l} + \rho_{h}^{g} \mathbf{q}^{g} + \mathbf{J}_{h}^{l}) = \boldsymbol{Q}_{h}, \\ 1 - S^{l} \geq 0, \ \boldsymbol{HP}^{g} - \beta^{l} \chi_{h}^{l} \geq 0, \ \left(1 - S^{l}\right)^{T} \left(\boldsymbol{HP}^{g} - \beta^{l} \chi_{h}^{l}\right) = \mathbf{0} \end{array}$$

Darcy's law:
$$\mathbf{q}^{\mathrm{l}} = -\mathbf{\underline{K}} \frac{k_{r\mathrm{l}}(S^{\mathrm{l}})}{\mu_{\mathrm{l}}} \left[\nabla P^{\mathrm{l}} - \rho^{\mathrm{l}} g \nabla z \right], \mathbf{q}^{\mathrm{g}} = -\mathbf{\underline{K}} \frac{k_{r\mathrm{g}}(S^{\mathrm{g}})}{\mu_{\mathrm{g}}} \left[\nabla P^{\mathrm{g}} - \rho^{\mathrm{g}} g \nabla z \right]$$

Amount of components: $I_{w} = \phi \rho_{w}^{l} S^{l} + \phi \rho_{w}^{g} S^{g}$, $I_{h} = \phi \rho_{h}^{l} S^{l} + \phi \rho_{h}^{g} S^{g}$

Fick flux: $\mathbf{J}_{h}^{l}=-\phi\mathbf{M}_{h}\mathbf{S}^{l}\mathbf{C}_{l}\mathbf{D}_{h}^{l}\mathbf{
abla}\chi_{h}^{l}$

Capillary pressure: $P^{\text{g}} = P^{\text{l}} + P_{\text{cp}}(S^{\text{l}})$

 $\label{eq:algebraic closure: } \textbf{S}^l + \textbf{S}^g = \textbf{1}, \quad \chi^l_h + \chi^l_w = \textbf{1}, \quad \chi^g_h = \textbf{1}$

Assumption

The water is incompressible and is only present in liquid phase and the gas is slightly compressible

$$\rho^l_{\rm w}={\rm cst},\quad \rho^{\rm g}_{\rm w}={\bf 0},\quad \rho^{\rm g}=\beta^{\rm g}{\boldsymbol{\mathcal P}}^{\rm g},\quad \rho^l_{\rm h}=\beta^l\chi^l_{\rm h},\quad \chi^{\rm g}_{\rm h}={\bf 1},\quad \chi^{\rm g}_{\rm w}={\bf 0}.$$

A posteriori analysis

Numerical experiments

Conclusion

Discretization by the finite volume method

Numerical solution:

 $\boldsymbol{U}^n := (\boldsymbol{U}^n_K)_{K \in \mathcal{T}_h}, \qquad \boldsymbol{U}^n_K := (\boldsymbol{S}^n_K, \boldsymbol{P}^n_K, \chi^n_K) \quad \text{one value per cell and time step}$

Time discretization: Consider: $t_0 = 0 < t_1 < \cdots < t_{N_t} = t_F = N_t \Delta t$ with constant time step Δt .

Space discretization: T_h a superadmissible family of conforming simplicial meshes (Ciarlet) of the space domain Ω .

$$(\boldsymbol{\nabla} \boldsymbol{v} \cdot \boldsymbol{n}_{K,\sigma}, 1)_{\sigma} := |\sigma| \frac{\boldsymbol{v}_{L} - \boldsymbol{v}_{K}}{\boldsymbol{d}_{KL}} \ \sigma = \overline{K} \cap \overline{L},$$

Intro	duc	

Discretization of water equation

$$\mathcal{S}_{\mathrm{w},K}^n(\boldsymbol{U}^n) := |\mathcal{K}|\partial_t^n l_{\mathrm{w},K} + \sum_{\sigma\in\mathcal{E}_K} \mathcal{F}_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) - |\mathcal{K}|Q_{\mathrm{w},K}^n = 0,$$

Total flux

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) := \rho^{\mathrm{l}}_{\mathrm{w}}(\mathfrak{M}^{\mathrm{l}})^n_{\sigma}(\psi^{\mathrm{l}})^n_{\sigma} - (\mathrm{j}^{\mathrm{l}}_{\mathrm{h}})^n_{\sigma} \quad \sigma \in \mathcal{E}^{\mathrm{int}}_K \quad \overline{\sigma} = \overline{K} \cap \overline{L}.$$

Discretization of hydrogen equation

$$S_{\mathrm{h},K}^n(\boldsymbol{U}^n) := |K|\partial_t^n l_{\mathrm{h},K} + \sum_{\sigma \in \mathcal{E}_K} F_{\mathrm{h},K,\sigma}(\boldsymbol{U}^n) - |K|Q_{\mathrm{h},K}^n = 0,$$

Total flux

 $F_{\mathrm{h},\mathcal{K},\sigma}(\boldsymbol{U}^n) := \beta^{\mathrm{l}} \chi_{\sigma}^n(\mathfrak{M}^{\mathrm{l}})_{\sigma}^n(\psi^{\mathrm{l}})_{\sigma}^n + (\psi^{\mathrm{g}})_{\sigma}^n(\mathfrak{M}^{\mathrm{g}})_{\sigma}^n(\rho^{\mathrm{g}})_{\sigma}^n + (\mathbf{j}_{\mathrm{h}}^{\mathrm{l}})_{\sigma}^n, \quad \sigma \in \mathcal{E}_{\mathcal{K}}^{\mathrm{int}} \quad \overline{\sigma} = \overline{\mathcal{K}} \cap \overline{\mathcal{L}}.$

- \mathfrak{M}^{l} : mobility of liquid phase (upwind approx)
- \mathfrak{M}^{g} : mobility of gas phase (upwind approx)
- ψ^1 : potential of liquid phase

- ψ^{g} : potential of gas phase
- j_h^1 : discrete Fick term
- $Q_{w,K}^n$, $Q_{h,K}^n$: source term constant in space and time

Intro	duc	

Discretization of water equation

$$\mathcal{S}_{\mathrm{w},\mathcal{K}}^n(\boldsymbol{U}^n) := |\mathcal{K}|\partial_t^n l_{\mathrm{w},\mathcal{K}} + \sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} \mathcal{F}_{\mathrm{w},\mathcal{K},\sigma}(\boldsymbol{U}^n) - |\mathcal{K}|Q_{\mathrm{w},\mathrm{K}}^n = 0,$$

Total flux

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) := \rho^{\mathrm{l}}_{\mathrm{w}}(\mathfrak{M}^{\mathrm{l}})^n_{\sigma}(\psi^{\mathrm{l}})^n_{\sigma} - (\mathrm{j}^{\mathrm{l}}_{\mathrm{h}})^n_{\sigma} \quad \sigma \in \mathcal{E}^{\mathrm{int}}_K \quad \overline{\sigma} = \overline{K} \cap \overline{L}.$$

Discretization of hydrogen equation

$$\mathcal{S}_{\mathrm{h},\mathcal{K}}^{n}(\boldsymbol{U}^{n}):=|\mathcal{K}|\partial_{t}^{n}\mathcal{I}_{\mathrm{h},\mathcal{K}}+\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}}\mathcal{F}_{\mathrm{h},\mathcal{K},\sigma}(\boldsymbol{U}^{n})-|\mathcal{K}|Q_{\mathrm{h},\mathrm{K}}^{n}=0,$$

Total flux

 $\mathcal{F}_{\mathrm{h},\mathcal{K},\sigma}(\boldsymbol{U}^n) := \beta^{\mathrm{l}} \chi_{\sigma}^n(\mathfrak{M}^{\mathrm{l}})_{\sigma}^n(\psi^{\mathrm{l}})_{\sigma}^n + (\psi^{\mathrm{g}})_{\sigma}^n(\mathfrak{M}^{\mathrm{g}})_{\sigma}^n(\rho^{\mathrm{g}})_{\sigma}^n + (\mathbf{j}_{\mathrm{h}}^{\mathrm{l}})_{\sigma}^n, \quad \sigma \in \mathcal{E}_{\mathcal{K}}^{\mathrm{int}} \quad \overline{\sigma} = \overline{\mathcal{K}} \cap \overline{\mathcal{L}}.$

- \mathfrak{M}^1 : mobility of liquid phase (upwind approx)
- \mathfrak{M}^{g} : mobility of gas phase (upwind approx)
- ψ^1 : potential of liquid phase

- ψ^{g} : potential of gas phase
- j_h^1 : discrete Fick term
- $Q_{w,K}^n$, $Q_{h,K}^n$: source term constant in space and time

Intro	duc	

Discretization of water equation

$$\mathcal{S}_{\mathrm{w},\mathcal{K}}^n(\boldsymbol{U}^n) := |\mathcal{K}|\partial_t^n l_{\mathrm{w},\mathcal{K}} + \sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} \mathcal{F}_{\mathrm{w},\mathcal{K},\sigma}(\boldsymbol{U}^n) - |\mathcal{K}|Q_{\mathrm{w},\mathrm{K}}^n = 0,$$

Total flux

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) := \rho^{\mathrm{l}}_{\mathrm{w}}(\mathfrak{M}^{\mathrm{l}})^n_{\sigma}(\psi^{\mathrm{l}})^n_{\sigma} - (\mathrm{j}^{\mathrm{l}}_{\mathrm{h}})^n_{\sigma} \quad \sigma \in \mathcal{E}^{\mathrm{int}}_K \quad \overline{\sigma} = \overline{K} \cap \overline{L}.$$

Discretization of hydrogen equation

$$S_{\mathrm{h},K}^n(oldsymbol{U}^n):=|oldsymbol{K}|\partial_t^noldsymbol{l}_{\mathrm{h},K}+\sum_{\sigma\in\mathcal{E}_K}F_{\mathrm{h},K,\sigma}(oldsymbol{U}^n)-|oldsymbol{K}|Q_{\mathrm{h},K}^n=0,$$

Total flux

 $F_{\mathbf{h},\mathcal{K},\sigma}(\boldsymbol{U}^n) := \beta^{\mathbf{l}} \chi_{\sigma}^n(\mathfrak{M}^{\mathbf{l}})_{\sigma}^n(\psi^{\mathbf{l}})_{\sigma}^n + (\psi^{\mathbf{g}})_{\sigma}^n(\mathfrak{M}^{\mathbf{g}})_{\sigma}^n(\rho^{\mathbf{g}})_{\sigma}^n + (\mathbf{j}_{\mathbf{h}}^{\mathbf{l}})_{\sigma}^n, \quad \sigma \in \mathcal{E}_{\mathcal{K}}^{\mathrm{int}} \quad \overline{\sigma} = \overline{\mathcal{K}} \cap \overline{\mathcal{L}}.$

- \mathfrak{M}^1 : mobility of liquid phase (upwind approx)
- \mathfrak{M}^{g} : mobility of gas phase (upwind approx)
- ψ^1 : potential of liquid phase

- ψ^{g} : potential of gas phase
- j_h^l : discrete Fick term
- $Q_{w,K}^n$, $Q_{h,K}^n$: source term constant in space and time

Introc	tio	

A posteriori analysis

Numerical experiments

Conclusion 000

Discrete complementarity problem

To reformulate the discrete constraints:

Definition (C-function)

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^n \times \mathbb{R}^n, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \ge 0, \ \boldsymbol{b} \ge 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0$$

min-function: min $(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \ge 0, \ \boldsymbol{b} \ge 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0.$

Application: complementarity constraints for the two-phase model

 $1 - S_{K}^{n} \geq 0, \ H(P_{K}^{n} + P_{cp}(S_{K}^{n})) - \beta^{l}\chi_{K}^{n} \geq 0, \ (1 - S_{K}^{n})^{T}(H(P_{K}^{n} + P_{cp}(S_{K}^{n})) - \beta^{l}\chi_{K}^{n}) = 0$

\updownarrow

 $\min\left(1-\boldsymbol{S}_{K}^{n},\boldsymbol{H}(\boldsymbol{P}_{K}^{n}+\boldsymbol{P}_{cp}(\boldsymbol{S}_{K}^{n}))-\beta^{1}\boldsymbol{\chi}_{K}^{n}\right)=\boldsymbol{0}$

Introd	

A posteriori analysis

Numerical experiments

Conclusion 000

Discrete complementarity problem

To reformulate the discrete constraints:

Definition (C-function)

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^n imes \mathbb{R}^n, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \geq 0, \ \boldsymbol{b} \geq 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0$$

min-function: min $(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \ge 0, \ \boldsymbol{b} \ge 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0.$

Application: complementarity constraints for the two-phase model

 $1 - S_{K}^{n} \ge 0, \ H(P_{K}^{n} + P_{cp}(S_{K}^{n})) - \beta^{1}\chi_{K}^{n} \ge 0, \ (1 - S_{K}^{n})^{T}(H(P_{K}^{n} + P_{cp}(S_{K}^{n})) - \beta^{1}\chi_{K}^{n}) = 0$

\$

 $\min\left(1-\frac{S_{K}^{n}}{H(P_{K}^{n}+P_{cp}(S_{K}^{n}))-\beta^{1}\chi_{K}^{n}\right)=0$

Introd	

A posteriori analysis

Numerical experiments

Conclusion

Inexact semismooth Newton method

For $1 \le n \le N_t$ and $\boldsymbol{U}^{n,0} \in \mathbb{R}^{3N_{sp}}$ fixed, the semismooth Newton algorithm generates a sequence $(\boldsymbol{U}^{n,k})_{k\ge 1} \in \mathbb{R}^{3N_{sp}}$ satisfying:

$$\mathbb{A}^{n,k-1}\boldsymbol{U}^{n,k}=\boldsymbol{B}^{n,k-1},$$

A^{n,k-1} ∈ ℝ<sup>3N_{sp}×3N_{sp}: Jacobian matrix "in the sense of Clarke" at step k − 1
B^{n,k-1} ∈ ℝ^{3N_{sp}}: right hand side vector at step k − 1
</sup>

Next, we use an iterative algebraic solver at the semismooth Newton step $k \ge 1$, starting from an initial guess $U^{n,k,0}$ generating a sequence $(U^{n,k,i})_{i\ge 1}$ satisfying

$$\mathbb{A}^{n,k-1}\boldsymbol{U}^{n,k,i} = \boldsymbol{B}^{n,k-1} - \boldsymbol{R}^{n,k,i}$$

• $\mathbf{R}^{n,k,i} \in \mathbb{R}^{3N_{sp}}$: algebraic residual vector.

Can we estimate the semismooth linearization error?

Can we estimate the iterative algebraic error?

Introd	

A posteriori analysis

Numerical experiments

Conclusion 000

Outline

Introduction

2 Model problem and its discretization

A posteriori analysis

4 Numerical experiments

5 Conclusion

Introd 00	luction	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion 000
Bi	bliogra	aphy			
Glob	al overview				
	W. PRAGER Appl. Math,	AND J. L. SYNGE, Approximation 1947.	ns in elasticity based or	n the concept of function s	<i>pace</i> , Quart.
	M. AINSWO Mathematic	RTH AND J. T. ODEN, <i>A posterior</i> s, New York, 2000.	error estimation in finit	te element analysis, Pure a	and Applied
	R. VERFÜR	TH, A posteriori error estimation to	echniques for finite eler	ment methods, Oxford, 201	13.
Equi	librated flux	reconstructions			
	P. DESTUYN 1999.	NDER AND B. MÉTIVET, <i>Explicit er</i>	ror bounds in a conforn	ning finite element method	, Math. Comp,
	D. BRAESS	AND J. SCHÖBERL, Equilibrated r	esidual error estimator	for edge elements, Math.	Comp, 2008.
	A. ERN AND	D M. VOHRALÍK, <i>Adaptive inexact</i> DEs, SIAM J. Sci. Comput, 2013.	Newton methods with a	a posteriori stopping criteria	a for nonlinear
Multi	iphase comp	oositional flows			

D. A. DI PIETRO, E. FLAURAUD, M. VOHRALÍK, AND S. YOUSEF, A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys, 2014.

C. CANCÈS, I. S. POP, AND M. VOHRALÍK, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp, 2014.

Introd	uction
00	

A posteriori analysis

Numerical experiments

Conclusion

Weak solution

$$\begin{split} &X := L^2((0, t_F); H^1(\Omega)), \quad Y := H^1((0, t_F); L^2(\Omega)), \quad \widehat{Y} := H^1((0, t_F); L^{\infty}(\Omega)), \\ &Z := \left\{ v \in L^2((0, t_F); L^{\infty}(\Omega)), \ v \ge 0 \ \text{on} \ \Omega \times (0, t_F) \right\}. \end{split}$$

Assumption (Weak formulation)

$$\begin{split} \boldsymbol{S}^{\mathrm{l}} &\in \widehat{\boldsymbol{Y}}, \quad 1 - \boldsymbol{S}^{\mathrm{l}} \in \boldsymbol{Z}, \quad l_{\mathrm{w}} \in \boldsymbol{Y}, \quad l_{\mathrm{h}} \in \boldsymbol{Y}, \quad \boldsymbol{P}^{\mathrm{l}} \in \boldsymbol{X}, \quad \chi_{\mathrm{h}}^{\mathrm{l}} \in \boldsymbol{X}, \\ \left(\boldsymbol{\Phi}_{\mathrm{w}} := \rho_{\mathrm{w}}^{\mathrm{l}} \mathbf{q}^{\mathrm{l}} - \mathbf{J}_{\mathrm{h}}^{\mathrm{l}}, \boldsymbol{\Phi}_{\mathrm{h}} := \rho_{\mathrm{h}}^{\mathrm{l}} \mathbf{q}^{\mathrm{l}} + \rho_{\mathrm{h}}^{\mathrm{g}} \mathbf{q}^{\mathrm{g}} + \mathbf{J}_{\mathrm{h}}^{\mathrm{l}}\right) \in \left[L^{2}((0, t_{\mathrm{F}}); \mathbf{H}(\mathrm{div}, \Omega))\right]^{2}, \\ \int_{0}^{t_{\mathrm{F}}} \left(\partial_{t} l_{c}, \varphi)_{\Omega}(t) \, \mathrm{dt} - \int_{0}^{t_{\mathrm{F}}} \left(\boldsymbol{\Phi}_{c}, \boldsymbol{\nabla}\varphi)_{\Omega}(t) \, \mathrm{dt} = \int_{0}^{t_{\mathrm{F}}} \left(\boldsymbol{Q}_{c}, \varphi)_{\Omega}(t) \, \mathrm{dt} \, \forall \varphi \in \boldsymbol{X}, \, \forall \boldsymbol{c} \in \{\mathrm{w}, \mathrm{h}\} \right) \\ \int_{0}^{t_{\mathrm{F}}} \left(\lambda - \left(1 - \boldsymbol{S}^{\mathrm{l}}\right), \boldsymbol{H}[\boldsymbol{P}^{\mathrm{l}} + \boldsymbol{P}_{\mathrm{cp}}(\boldsymbol{S}^{\mathrm{l}})] - \beta^{\mathrm{l}} \chi_{\mathrm{h}}^{\mathrm{l}}\right)_{\Omega}(t) \, \mathrm{dt} \geq 0 \quad \forall \lambda \in \boldsymbol{Z}, \end{split}$$

the initial condition holds.

 $\begin{aligned} \|\varphi\|_X^2 &:= \sum_{n=1}^{N_t} \|\varphi\|_{X_n}^2 \, \mathrm{dt}, \quad \|\varphi\|_{X_n} := \int_{I_n} \sum_{K \in \mathcal{T}_h} \|\varphi\|_{X,K}^2 \, \mathrm{dt}, \\ \text{Define space-time functions:} \end{aligned}$

$$\begin{split} P_{h\tau}^{n,k,i}(t^{n}) &= P_{h}^{n,k,i} \in \mathbb{P}_{2}^{d}(\mathcal{T}_{h}), \ \tilde{P}_{h\tau}^{n,k,i}(t^{n}) = \tilde{P}_{h}^{n,k,i} \in \mathbb{P}_{2}^{c}(\mathcal{T}_{h}), \ l_{c,h\tau}^{n,k,i}(t^{n}) = l_{c,h}^{n,k,i} \in \mathbb{P}_{0}^{d}(\mathcal{T}_{h}), \\ S_{h\tau}^{n,k,i}(t^{n}) &= S_{h}^{n,k,i} \in \mathbb{P}_{0}^{d}(\mathcal{T}_{h}), \ \chi_{h\tau}^{n,k,i}(t^{n}) = \chi_{h}^{n,k,i} \in \mathbb{P}_{2}^{d}(\mathcal{T}_{h}), \ \tilde{\chi}_{h\tau}^{n,k,i}(t^{n}) = \tilde{\chi}_{h}^{n,k,i} \in \mathbb{P}_{2}^{c}(\mathcal{T}_{h}), \end{split}$$

Introduction 00	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion
Weak	solution			

$$\begin{split} &X := L^2((0, t_F); H^1(\Omega)), \quad Y := H^1((0, t_F); L^2(\Omega)), \quad \widehat{Y} := H^1((0, t_F); L^{\infty}(\Omega)), \\ &Z := \left\{ v \in L^2((0, t_F); L^{\infty}(\Omega)), \ v \ge 0 \text{ on } \Omega \times (0, t_F) \right\}. \end{split}$$

Assumption (Weak formulation)

$$\begin{split} \boldsymbol{S}^{l} &\in \widehat{\boldsymbol{Y}}, \quad 1 - \boldsymbol{S}^{l} \in \boldsymbol{Z}, \quad \textit{I}_{w} \in \boldsymbol{Y}, \quad \textit{I}_{h} \in \boldsymbol{Y}, \quad \boldsymbol{P}^{l} \in \boldsymbol{X}, \quad \chi_{h}^{l} \in \boldsymbol{X}, \\ \left(\boldsymbol{\Phi}_{w} := \rho_{w}^{l} \boldsymbol{q}^{l} - \boldsymbol{J}_{h}^{l}, \boldsymbol{\Phi}_{h} := \rho_{h}^{l} \boldsymbol{q}^{l} + \rho_{h}^{g} \boldsymbol{q}^{g} + \boldsymbol{J}_{h}^{l}\right) \in \left[L^{2}((0, t_{F}); \boldsymbol{H}(\operatorname{div}, \Omega))\right]^{2}, \\ \int_{0}^{t_{F}} \left(\partial_{t}\textit{I}_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{dt} - \int_{0}^{t_{F}} \left(\boldsymbol{\Phi}_{c}, \boldsymbol{\nabla}\varphi\right)_{\Omega}(t) \, \mathrm{dt} = \int_{0}^{t_{F}} \left(\boldsymbol{Q}_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{dt} \; \forall \varphi \in \boldsymbol{X}, \; \forall c \in \{w, h\} \\ \int_{0}^{t_{F}} \left(\lambda - \left(1 - \boldsymbol{S}^{l}\right), \boldsymbol{H}[\boldsymbol{P}^{l} + \boldsymbol{P}_{cp}(\boldsymbol{S}^{l})] - \beta^{l} \chi_{h}^{l}\right)_{\Omega}(t) \, \mathrm{dt} \geq 0 \quad \forall \lambda \in \boldsymbol{Z}, \\ \textit{the initial condition holds.} \end{split}$$

 $\begin{aligned} \|\varphi\|_X^2 &:= \sum_{n=1}^{N_t} \|\varphi\|_{X_n}^2 \, \mathrm{dt}, \quad \|\varphi\|_{X_n} := \int_{I_n} \sum_{K \in \mathcal{T}_h} \|\varphi\|_{X,K}^2 \, \mathrm{dt}, \\ \text{Define space-time functions:} \end{aligned}$

$$\begin{split} P_{h\tau}^{n,k,i}(t^{n}) &= P_{h}^{n,k,i} \in \mathbb{P}_{2}^{d}(\mathcal{T}_{h}), \ \tilde{P}_{h\tau}^{n,k,i}(t^{n}) = \tilde{P}_{h}^{n,k,i} \in \mathbb{P}_{2}^{c}(\mathcal{T}_{h}), \ l_{c,h\tau}^{n,k,i}(t^{n}) = l_{c,h}^{n,k,i} \in \mathbb{P}_{0}^{d}(\mathcal{T}_{h}), \\ S_{h\tau}^{n,k,i}(t^{n}) &= S_{h}^{n,k,i} \in \mathbb{P}_{0}^{d}(\mathcal{T}_{h}), \ \chi_{h\tau}^{n,k,i}(t^{n}) = \chi_{h}^{n,k,i} \in \mathbb{P}_{2}^{d}(\mathcal{T}_{h}), \ \tilde{\chi}_{h\tau}^{n,k,i}(t^{n}) = \tilde{\chi}_{h}^{n,k,i} \in \mathbb{P}_{2}^{c}(\mathcal{T}_{h}), \end{split}$$

Introduction	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion
00	000000	0000000000	000000000	000
Weak	solution			

$$\begin{split} &X := L^2((0, t_F); H^1(\Omega)), \quad Y := H^1((0, t_F); L^2(\Omega)), \quad \widehat{Y} := H^1((0, t_F); L^{\infty}(\Omega)), \\ &Z := \left\{ v \in L^2((0, t_F); L^{\infty}(\Omega)), \ v \ge 0 \text{ on } \Omega \times (0, t_F) \right\}. \end{split}$$

Assumption (Weak formulation)

$$\begin{split} \boldsymbol{S}^{l} &\in \widehat{\boldsymbol{Y}}, \quad 1 - \boldsymbol{S}^{l} \in \boldsymbol{Z}, \quad \boldsymbol{l}_{w} \in \boldsymbol{Y}, \quad \boldsymbol{l}_{h} \in \boldsymbol{Y}, \quad \boldsymbol{P}^{l} \in \boldsymbol{X}, \quad \boldsymbol{\chi}_{h}^{l} \in \boldsymbol{X}, \\ \left(\boldsymbol{\Phi}_{w} := \rho_{w}^{l} \boldsymbol{q}^{l} - \boldsymbol{J}_{h}^{l}, \boldsymbol{\Phi}_{h} := \rho_{h}^{l} \boldsymbol{q}^{l} + \rho_{h}^{g} \boldsymbol{q}^{g} + \boldsymbol{J}_{h}^{l}\right) \in \left[L^{2}((0, t_{F}); \boldsymbol{H}(\operatorname{div}, \Omega))\right]^{2}, \\ \int_{0}^{t_{F}} \left(\partial_{t} \boldsymbol{l}_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{dt} - \int_{0}^{t_{F}} \left(\boldsymbol{\Phi}_{c}, \boldsymbol{\nabla}\varphi\right)_{\Omega}(t) \, \mathrm{dt} = \int_{0}^{t_{F}} \left(\boldsymbol{Q}_{c}, \varphi\right)_{\Omega}(t) \, \mathrm{dt} \; \forall \varphi \in \boldsymbol{X}, \; \forall \boldsymbol{c} \in \{w, h\} \\ \int_{0}^{t_{F}} \left(\lambda - \left(1 - \boldsymbol{S}^{l}\right), \boldsymbol{H}[\boldsymbol{P}^{l} + \boldsymbol{P}_{\operatorname{cp}}(\boldsymbol{S}^{l})] - \beta^{l} \boldsymbol{\chi}_{h}^{l}\right)_{\Omega}(t) \, \mathrm{dt} \geq 0 \quad \forall \lambda \in \boldsymbol{Z}, \end{split}$$

the initial condition holds.

 $\begin{aligned} \|\varphi\|_X^2 &:= \sum_{n=1}^{N_t} \|\varphi\|_{X_n}^2 \, \mathrm{dt}, \quad \|\varphi\|_{X_n} := \int_{I_n} \sum_{K \in \mathcal{T}_h} \|\varphi\|_{X,K}^2 \, \mathrm{dt}, \\ \text{Define space-time functions:} \end{aligned}$

$$\begin{split} P_{h\tau}^{n,k,i}(t^{n}) &= P_{h}^{n,k,i} \in \mathbb{P}_{2}^{d}(\mathcal{T}_{h}), \ \tilde{P}_{h\tau}^{n,k,i}(t^{n}) = \tilde{P}_{h}^{n,k,i} \in \mathbb{P}_{2}^{c}(\mathcal{T}_{h}), \ I_{c,h\tau}^{n,k,i}(t^{n}) = I_{c,h}^{n,k,i} \in \mathbb{P}_{0}^{d}(\mathcal{T}_{h}), \\ S_{h\tau}^{n,k,i}(t^{n}) &= S_{h}^{n,k,i} \in \mathbb{P}_{0}^{d}(\mathcal{T}_{h}), \ \chi_{h\tau}^{n,k,i}(t^{n}) = \chi_{h}^{n,k,i} \in \mathbb{P}_{2}^{d}(\mathcal{T}_{h}), \ \tilde{\chi}_{h\tau}^{n,k,i}(t^{n}) = \tilde{\chi}_{h}^{n,k,i} \in \mathbb{P}_{2}^{c}(\mathcal{T}_{h}). \end{split}$$

Introduction

A posteriori analysis

Numerical experiments

Conclusion 000

. 1

Error measure

Dual norm of the residual for the components

 $\begin{aligned} \|\mathcal{R}_{c}(S_{h\tau}, P_{h\tau}, \chi_{h\tau})\|_{X_{n}^{\prime}} &= \sup_{\varphi \in X_{n}, \|\varphi\|_{X_{n}}=1} \int_{I_{n}} \left(Q_{c} - \partial_{t} I_{c,h\tau}, \varphi \right)_{\Omega} \left(t \right) + \left(\Phi_{c,h\tau}, \nabla \varphi \right)_{\Omega} \left(t \right) \mathrm{d}t. \end{aligned}$ Residual for the constraints

$$\mathcal{R}_{e}(S_{h\tau}, P_{h\tau}, \chi_{h\tau}) = \int_{I_{n}} \left(1 - S_{h\tau}, H[P_{h\tau} + P_{cp}(S_{h\tau})] - \beta^{1} \chi_{h\tau}\right)_{\Omega}(t) dt.$$

Error measure for the nonconformity of the pressure

$$\mathcal{N}_{\mathcal{P}}(\mathcal{P}_{h\tau}) := \inf_{\delta_{l} \in \mathcal{X}_{n}} \left\{ \sum_{c \in \{w,h\}} \int_{I_{n}} \left\| \underline{\mathsf{K}} \frac{\mathbf{k}_{r}^{l}(\mathcal{S}_{h\tau})}{\mu^{l}} \rho_{c}^{l} \nabla \left(\mathcal{P}_{h\tau} - \delta_{l} \right)(t) \right\|^{2} \mathrm{d}t \right\}^{2},$$

Error measure for nonconformity of the molar fraction

$$\mathcal{N}_{\chi}(\chi_{h au}) := \inf_{ heta \in X_n} \left\{ \int_{I_n} \left\| -\phi M_{
m h} S_{h au} \left(rac{
ho_{
m w}^{
m l}}{M_{
m w}} + rac{eta^{
m l}}{M_{
m h}} \chi_{h au}
ight) D_{
m h}^{
m l} oldsymbol{
abla} \left(\chi_{h au} - heta
ight) (t)
ight\|^2 \, {
m d} t
ight\}^{rac{2}{2}},$$

Definition (Error measure)

$$\mathcal{N}^{n} = \left\{ \sum_{\boldsymbol{c} \in \mathcal{C}} \left\| \mathcal{R}_{\boldsymbol{c}}(\boldsymbol{S}_{h\tau}, \boldsymbol{P}_{h\tau}, \chi_{h\tau}) \right\|_{\boldsymbol{X}_{n}^{\prime}}^{2} \right\}^{\frac{1}{2}} + \left\{ \sum_{\boldsymbol{p} \in \mathcal{P}} \mathcal{N}_{\boldsymbol{p}}^{2} + \mathcal{N}_{\chi}^{2} \right\}^{\frac{1}{2}} + \mathcal{R}_{e}(\boldsymbol{S}_{h\tau}, \boldsymbol{P}_{h\tau}, \chi_{h\tau})$$

Introd	
00	

A posteriori analysis

Numerical experiments

Conclusion

Finite volume linearization

The finite volume scheme provides

$$|\mathcal{K}|\partial_t^n I_{c,\mathcal{K}} + \sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} F_{c,\mathcal{K},\sigma}(\boldsymbol{U}^n) = |\mathcal{K}|Q_{c,\mathcal{K}}^n,$$

Inexact semismooth linearization

$$\frac{|K|}{\Delta t} \left[I_{c,K} \left(\boldsymbol{U}^{n,k-1} \right) - I_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i} \right] + \sum_{\sigma \in \mathcal{E}_{K}^{\text{int}}} \mathcal{F}_{c,K,\sigma}^{n,k,i} - |K| Q_{c,K}^{n} + \boldsymbol{R}_{c,K}^{n,k,i} = 0$$

Linear perturbation in the accumulation

$$\mathcal{L}_{c,K}^{n,k,i} = \sum_{K' \in \mathcal{T}_h} \frac{|K|}{\Delta t} \frac{\partial l_{c,K}^n}{\partial \boldsymbol{U}_{K'}^n} (\boldsymbol{U}_{K'}^{n,k-1}) \left[\boldsymbol{U}_{K'}^{n,k,i} - \boldsymbol{U}_{K'}^{n,k-1} \right],$$

Linearized component flux

.

$$\mathcal{F}_{c,K,\sigma}^{n,k,i} = \sum_{K'\in\mathcal{T}_{h}} \frac{\partial F_{c,K,\sigma}}{\partial \boldsymbol{U}_{K'}^{n}} \left(\boldsymbol{U}^{n,k-1}\right) \left[\boldsymbol{U}_{K'}^{n,k,i} - \boldsymbol{U}_{K'}^{n,k-1}\right] + F_{c,K,\sigma} \left(\boldsymbol{U}^{n,k-1}\right).$$

Introduction 00	Model problem and its discretization	A posteriori analysis ○○○○○●○○○○○	Numerical experiments	Cond
Raviar	t Thomas spaces			

Definition

The lowest-order Raviart-Thomas space is defined by

$$\mathsf{RT}_0(\Omega) = \{ oldsymbol{w}_h \in \mathsf{H}(ext{div}, \Omega), oldsymbol{w}_h |_{\mathcal{K}} \in \mathsf{RT}_0(\mathcal{K}) \ orall \mathcal{K} \in \mathcal{T}_h \}$$

 $\mathbf{RT}_0(K) = [\mathbb{P}_0(K)]^2 + \vec{\mathbf{x}} \cdot \mathbb{P}_0(K)$

Degrees of freedom RT₀:

$$v_j = (v \cdot n_{e_j}, 1)_{e_j}, \ e_j \in \partial K, \ j = \{1, 2, 3\}.$$

lusion

Model problem and its discretization

A posteriori analysis

Numerical experiments

Conclusion

Component flux reconstructions

Discretization error flux reconstruction:

$$\left(\Theta_{c,h,\mathrm{disc}}^{n,k,i} \cdot \boldsymbol{n}_{\mathcal{K}}, 1\right)_{\sigma} = F_{c,\mathcal{K},\sigma}\left(\boldsymbol{U}^{n,k,i}\right) \quad \forall \mathcal{K} \in \mathcal{T}_{h}$$

Linearization error flux reconstruction:

$$\left(\boldsymbol{\Theta}_{c,h,\mathrm{lin}}^{n,k,i}\cdot\boldsymbol{n}_{K},1\right)_{\sigma}=\mathcal{F}_{c,K,\sigma}^{n,k,i}-F_{c,K,\sigma}\left(\boldsymbol{U}^{n,k,i}\right)\quad\forall K\in\mathcal{T}_{h},$$

Algebraic error flux reconstruction:

$$\Theta_{c,h,\mathrm{alg}}^{n,k,i,\nu} := \Theta_{c,h,\mathrm{disc}}^{n,k,i+\nu} + \Theta_{c,h,\mathrm{lin}}^{n,k,i+\nu} - \left(\Theta_{c,h,\mathrm{disc}}^{n,k,i} + \Theta_{c,h,\mathrm{lin}}^{n,k,i}\right) \quad \forall K \in \mathcal{T}_h$$

Total flux reconstruction:

$$\Theta_{c,h}^{n,k,i,\nu} = \Theta_{c,h,\text{disc}}^{n,k,i} + \Theta_{c,h,\text{lin}}^{n,k,i} + \Theta_{c,h,\text{alg}}^{n,k,i,\nu}$$

Proposition (Equilibration property)

$$\left(Q_{c,K}^{n}-\frac{I_{c,K}(\boldsymbol{U}^{n,k-1})-I_{c,K}^{n-1}+\mathcal{L}_{c,K}^{n,k,i+\nu}}{\tau_{n}}-\boldsymbol{\nabla}\cdot\boldsymbol{\Theta}_{c,h}^{n,k,i,\nu},\boldsymbol{1}\right)_{K}=R_{c,K}^{n,k,i+\nu}$$

Introduction 00	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion 000
Error estimators				

- 1. 1

Remark

$$\partial_t l_c + \nabla \cdot \Theta_{c,h}^{n,k,i,\nu} \neq Q_c \text{ and } \Theta_{c,h}^{n,k,i,\nu} \neq \Phi_{c,h\tau}^{n,k,i}(t^n) \text{ and } 1 - S_{h\tau}^{n,k,i} \not\geq 0 \text{ and } H\left[P_{h\tau}^{n,k,i} + P_{cp}\left(S_{h\tau}^{n,k,i}\right)\right] - \beta^1 \chi_{h\tau}^{n,k,i} \not\geq 0 \text{ and } P_{h\tau}^{n,k,i} \notin X \text{ and } \chi_{h\tau}^{n,k,i} \notin X$$

Discretization estimator

$$\begin{split} \eta_{\mathrm{R},K,c}^{n,k,i,\nu} &= \min\left\{C_{\mathrm{PW}}, \varepsilon^{-\frac{1}{2}}\right\}h_{K} \left\|Q_{c,h}^{n} - \frac{l_{c,K}(\boldsymbol{U}^{n,k-1}) - l_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i}}{\tau_{n}} - \boldsymbol{\nabla} \cdot \boldsymbol{\Theta}_{c,h}^{n,k,i}}\right\|_{K} \\ \eta_{\mathrm{F},K,c}^{n,k,i,\nu}(t) &= \left\|\boldsymbol{\Theta}_{c,h}^{n,k,i,\nu} - \boldsymbol{\Phi}_{c,h\tau}^{n,k,i}(t)\right\|_{K} \\ \eta_{\mathrm{P},K,\mathrm{pos}}^{n,k,i}(t) &= \left(\left\{1 - S_{h\tau}^{n,k,i}\right\}^{+}(t), \left\{H\left[P_{h\tau}^{n,k,i} + P_{\mathrm{cp}}\left(S_{h\tau}^{n,k,i}\right)\right] - \beta^{1}\chi_{h\tau}^{n,k,i}\right\}^{+}(t)\right)_{K} \\ \eta_{\mathrm{NC},K,l,c}^{n,k,i}(t) &= \left\|\underline{K}\frac{k_{\mathrm{r}}^{\mathrm{l}}(S_{h\tau}^{n,k,i})}{\mu^{1}}\rho_{c}^{1}\boldsymbol{\nabla}\left(P_{h\tau}^{n,k,i} - \tilde{P}_{h\tau}^{n,k,i}\right)(t)\right\|_{K} \\ \eta_{\mathrm{NC},K,\chi}^{n,k,i}(t) &= \left\|-\phi M_{\mathrm{h}}S_{h\tau}^{n,k,i}\left(\frac{\rho_{\mathrm{w}}^{\mathrm{l}}}{M_{\mathrm{w}}} + \frac{\beta^{1}}{M_{\mathrm{h}}}\chi_{h\tau}^{n,k,i}\right)D_{\mathrm{h}}^{1}\boldsymbol{\nabla}\left(\chi_{h\tau}^{n,k,i} - \tilde{\chi}_{h\tau}^{n,k,i}\right)(t)\right\|_{K} \end{split}$$

Introduction	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion
Error est	timators			

Linearization estimator

$$\eta_{\text{NA},K,c}^{n,k,i} = \varepsilon^{-\frac{1}{2}} h_{K} (\tau_{n})^{-1} \left\| I_{c,K} (\boldsymbol{U}^{n,k,i}) - I_{c,K} (\boldsymbol{U}^{n,k-1}) - \mathcal{L}_{c,K}^{n,k,i} \right\|_{K} \\ \eta_{\text{P},K,\text{neg}}^{n,k,i}(t) = \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{-} (t), \left\{ H \left[P_{h\tau}^{n,k,i} + P_{\text{cp}} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta^{1} \chi_{h\tau}^{n,k,i} \right\}^{-} (t) \right\}_{K}$$

Algebraic estimator

$$\begin{split} \eta_{\mathrm{alg},K,c}^{n,k,i} &:= \left\| \boldsymbol{\Theta}_{c,h,\mathrm{alg}}^{n,k,i,\nu} \right\|_{\mathcal{K}} \\ \eta_{\mathrm{rem},K,c}^{n,k,i,\nu} &:= h_{\mathcal{K}} |\mathcal{K}|^{-1} \varepsilon^{-\frac{1}{2}} \left\| \boldsymbol{R}_{c,K}^{n,k,i+\nu} \right\|_{\mathcal{K}} \end{split}$$

Theorem

$$\mathcal{N}^{n,k,i} \leq \eta_{\text{disc}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}$$

Introduction 00	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion
Adaptiv	ity			

Algorithm 1 Adaptive inexact semismooth Newton algorithm

Initialization: Choose an initial vector $\boldsymbol{U}^{n,0} \in \mathbb{R}^{3N_h}$, (k = 0) **Do**

k = k + 1Compute $\mathbb{A}^{n,k-1} \in \mathbb{R}^{3N_h,3N_h}$, $\mathbf{B}^{n,k-1} \in \mathbb{R}^{3N_h}$ Consider the system of linear algebraic equations $\mathbb{A}^{n,k-1}\mathbf{U}^{n,k} = \mathbf{B}^{n,k-1}$ Initialization for the linear solver: Define $\mathbf{U}^{n,k,0} = \mathbf{U}^{n,k-1}$, (i = 0) as initial guess for the linear solver

Do

i = *i* + 1

Compute Residual: $\mathbf{R}^{n,k,i} = \mathbf{B}^{n,k-1} - \mathbb{A}^{n,k-1} \mathbf{U}^{n,k,i}$ Compute estimators

$$\begin{array}{l} \textbf{While} \quad \eta_{\text{alg}}^{n,k,i} \geq \gamma_{\text{alg}} \max \left\{ \eta_{\text{disc}}^{n,k,i}, \eta_{\text{lin}}^{n,k,i} \right\} \\ \textbf{While} \quad \overline{\eta_{\text{lin}}^{n,k,i} \geq \gamma_{\text{lin}} \eta_{\text{disc}}^{n,k,i}} \\ \textbf{End} \end{array}$$

Introd	

A posteriori analysis

Numerical experiments

Conclusion

Outline

Introduction

- 2 Model problem and its discretization
- 3 A posteriori analysis
- 4 Numerical experiments
- 5 Conclusion

Introduction	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion 000

Numerical experiments

 Ω : one-dimensional core with length L = 200m. We consider the **semismooth Newton-min solver** in combination with the **GMRES** algebraic solver.

 $\Delta t = 5000$ years, $N_{\rm sp} = 1000$ cells, $t_{\rm F} = 5 \times 10^5$ years.

Van Genuchten-Mualem model:

$$P_{cp}(S^{l}) = P_{r} \left(S_{le}^{-\frac{1}{m}} - 1 \right)^{\frac{1}{n^{*}}}$$
$$k_{r}^{l}(S^{l}) = \sqrt{S_{le}} \left(1 - (1 - S_{le}^{\frac{1}{m}})^{m} \right)^{2}, \ k_{r}^{g}(S^{l}) = \sqrt{1 - S_{le}} \left(1 - S_{le}^{\frac{1}{m}} \right)^{2m}$$

with

$$S_{\mathrm{le}} = rac{S^{\mathrm{l}} - S_{\mathrm{lr}}}{1 - S_{\mathrm{lr}} - S_{\mathrm{gr}}}$$
 and $m = 1 - rac{1}{n^*}$

Model problem and its discretization

A posteriori analysis

Numerical experiments

Conclusion 000

Numerical experiments

Solution at $t = 1.05 \times 10^5$ years

Complementarity constraints at k = 4 and i = 2

0 × 10⁻⁶

Model problem and its discretization

A posteriori analysis

Numerical experiments

Conclusion

Phase transition estimator

$t = 1.25 \times 10^4$ years 10⁻⁶ 10⁻⁶ 10⁻¹⁰ 10⁻¹⁰

Remark

This estimator detects the error caused by the appearance of the gas phase whenever the gas spreads throughout the domain.

Model problem and its discretization

A posteriori analysis

Numerical experiments

Inexact Newton-min

Conclusion 000

Newton-min adaptivity

Exact Newton-min

Adaptive inexact Newton-min

GMRES iterations

Conclusion

Model problem and its discretization

Numerical experiments

Model problem and its discretization

A posteriori analysis

Numerical experiments

Conclusion

Overall performance

Model problem and its discretization

A posteriori analysis

Numerical experiments

Conclusion 000

Accuracy

 $t=1.05 imes10^{5}$ years, $\gamma_{
m lin}=\gamma_{
m alg}=10^{-3}$

Introduction 00	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion 000
Accurac	Y			

$t = 1.05 \times 10^5$ years, $\gamma_{\rm lin} = 10^{-6}, \gamma_{\rm alg} = 10^{-3}$

$(\gamma_{ m alg},\gamma_{ m lin})$	Cumulated Newton-min iterations	Cumulated GMRES iterations
$(10^{-1}, 10^{-1})$	100	366
$(10^{-3}, 10^{-3})$	113	427
(10 ⁻⁶ , 10 ⁻³)	108	967
(10 ⁻³ , 10 ⁻⁶)	351	1682
(10 ⁻⁶ , 10 ⁻⁶)	308	2019
Exact resolution	600	6000

Introd	

A posteriori analysis

Conclusion 000

Complements: Newton–Fischer–Burmeister

$$[f_{
m FB}({\pmb a}, {\pmb b})]_l = \sqrt{{\pmb a}_l^2 + {\pmb b}_l^2 - ({\pmb a}_l + {\pmb b}_l)} \quad l = 1, \dots, N_{
m sp}.$$

$(\gamma_{ m alg},\gamma_{ m lin})$	Cumulated number of Newton–Fise Burmeister iterations	cher- Cumulated number of GMRES iterations
$(10^{-1}, 10^{-1})$	100	428
$(10^{-3}, 10^{-3})$	119	751
$(10^{-3}, 10^{-6})$	482	2074
$(10^{-6}, 10^{-3})$	117	1694
Exact resolution	757	10089

- Adaptive inexact Newton–Fischer–Burmeister is faster than exact Newton–Fischer–Burmeister. It saves roughly 90% of the iterations
- Adaptive inexact Newton-min is faster than Adaptive inexact Newton–Fischer–Burmeister. It saves roughly 40% of the iterations.

Introd	

A posteriori analysis

Numerical experiments

Conclusion ●○○

Outline

Introduction

- 2 Model problem and its discretization
- 3 A posteriori analysis
- Numerical experiments

Introduction 00	Model problem and its discretization	A posteriori analysis	Numerical experiments	Conclusion OOO
Conclus	ion			

- We devised an a posteriori error estimate between the exact and approximate solution for a wide class of semi-smooth Newton methods.
- This estimate distinguishes the error components.

Ongoing work:

- Devise space-time adaptivity
- Optimize the code

I. BEN GHARBIA, J. DABAGHI, V. MARTIN, AND M. VOHRALÍK, A posteriori error estimates and adaptive stopping criteria for a compositional two-phase flow with nonlinear complementarity constraints. HAL Preprint 01919067, submitted for publication, 2018

J. DABAGHI, V. MARTIN, AND M. VOHRALÍK, Adaptive inexact semismooth Newton methods for the contact problem between two membranes. HAL Preprint 01666845, submitted for publication, 2018

F

J. DABAGHI, V. MARTIN, AND M. VOHRALÍK, A posteriori error estimate and adaptive stopping criteria for a parabolic variational inequality. In preparation.

Model problem and its discretization

A posteriori analysis

Numerical experiment

Conclusion

Thank you for your attention!

