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Motivation

Numerical simulation of the PVD process for the fabrication of CIGS
(Copper-Indium-Galium-Selenium) solar panels

1 The chemical species are injected under gazeous
form in a hot chamber.

2 A cross-diffusion process occurs and the local
volumic fraction of the species evolve with respect
to time.

3 goal : optimize the injected flux to obtain high
performance solar cells.

The numerical simulation of the cross-diffusion system is highly expensive.

Need to construct robust schemes to reduce the computational time.
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Model Problem

Ω ⊂ R2 : polygonal domain, T > 0 : final simulation time, Ns : number of chemical species.

Cross-diffusion model

∂tui −∇ ·

 Ns∑
j=1

ai,j
(
uj∇ui − ui∇uj

) = 0 in Ω× [0,T ], for i ∈ [1,Ns] ,

 Ns∑
j=1

ai,j
(
uj∇ui − ui∇uj

) · n = 0 on ∂Ω× [0,T ], for i ∈ [1,Ns] ,

ui(x ,0) = ui
0(x) in Ω, for i ∈ [1,Ns] .

Assume A ∈ RNs,Ns , A = (ai,j)1≤i,j≤Ns is symmetric with nonnegative coefficients and
that its diagonal terms vanish.
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Gradient flow structure

Entropy functional:

E(u) :=

∫
Ω

Ns∑
i=1

ui(x) ln(ui(x)) dx u = (ui)i∈J1,NsK

The cross-diffusion system has a gradient flow structure and can be rewritten as

∂tu −∇ · (C(u)∇dE(u))

(C(u)∇dE(u)) · n = 0

u(x ,0) = u0(x) in Ω.

C(u) ∈ RNs,Ns : mobility matrix
dE : Entropy differential defined by

(dE(u))i :=
∂E(u)

∂ui
= 1 + ln(ui).

4/33



Introduction Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments Conclusion

Theorem
There exists a weak solution u satisfying

u ∈
[
L2

loc(R+,H1(Ω,RNs ))
]Ns

and ∂tu ∈
[
L2

loc(R+,
[
H1(Ω,RNs )

]′
)

]Ns

.

Structural properties of the solution: Consider u0 = (u0
1 , · · · ,u

0
Ns

) ∈ RNs
+ such that∑Ns

i=1 u0
i = 1 and

∥∥u0
∥∥

L∞(Ω)
< +∞. Then,

1 mass conservation:
∫

Ω
ui(x , t) dx =

∫
Ω

ui
0(x) dx ∀t ∈ [0,T ], ∀i ∈ [1,Ns].

2 positivity: ui(x , t) ≥ 0 ∀x ∈ Ω, ∀t ∈ [0,T ], ∀i ∈ [1,Ns].

3 preservation of the volume filling constraint: u ∈ RNs
+ such that

∑Ns
i=1 ui = 1.

4 entropy-entropy dissipation relation
d
dt

E(u) +

∫
Ω

∑
1≤i<j≤Ns

ai,jui(x)uj(x)|∇ ln(ui(x))−∇ ln(uj(x))|2 dx = 0.
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The cell-centered finite Volume method

Ns unknowns per cell Un := (un
i,K )K∈Th,i∈J1,NsK ∈ RNe×Ns

U0 ∈ RNs×Ne where u0
i,K =

1
|K |

∫
K

ui
0(x) dx

FV scheme : find Un ∈ RNe×Ns satisfying

|K |
un

i,K − un−1
i,K

∆tn
+
∑
σ∈EK

Fn
i,Kσ(Un) = 0

Flux: Fn
i,Kσ(Un) := −a?τσDKσun

i − τσ

 N∑
j=1

(
ai,j − a?

) (
un

j,σDKσun
i − un

i,σDKσun
j

).

edge unknown un
i,σ :=


0 if min(un

i,K ,u
n
i,Kσ) < 0,

un
i,K if un

i,K = un
i,Kσ ≥ 0,

un
i,K − un

i,Kσ

ln(un
i,K )− ln(un

i,Kσ)
if un

i,K 6= un
i,Kσ ≥ 0.
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Remark
The main idea of the introduction of the parameter a? > 0 is to avoid unphysical
solutions Cancès, Gaudeul 2020.
The numerical flux is conservative in the sense that for σ ∈ E int

h , σ = K |L,
F n

i,Lσ = −F n
i,Kσ.

Structural properties of the discrete solution:

Theorem (Cancès, Gaudeul 2020)
1 mass conservation

∑
K∈Th

|K |un
i,K =

∫
Ω ui

0(x) dx ∀i ∈ [1,Ns] , ∀n ∈ [0,Nt].

2 positivity un
i,K > 0 ∀K ∈ Th, ∀i ∈ [1,Ns] , ∀n ∈ [0,Nt].

3 Volume filling constraints:
∑Ns

i=1 un
i,K = 1 ∀K ∈ Th, ∀n ∈ [0,Nt].

4 Decays of the discrete entropy ETh (Un) ≤ ETh (Un−1) ∀n ∈ [1,Nt] where
ETh (U) :=

∑
K∈Th

∑Ns
i=1 |K |ui,K ln(ui,K ).
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Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

Gn(Un) = 0 where Gn : RNe×Ns → RNe×Ns .

Initialization of Newton solver: Let n ∈ J1,NtK and Un,0 ∈ RNe×Ns be fixed (typically
Un,0 = Un−1).

Linear system : the Newton algorithm generates a sequence (Un,k )k≥1, with Un,k ∈ RNe×Ns

solution of
An,k−1Un,k = Bn,k−1.

The jacobian matrix An,k−1 ∈ RNe×Ns,Ne×Ns and the right-hand side vector Bn,k−1 ∈ RNe×Ns

are defined by

An,k−1 := JGn (Un,k−1) and Bn,k−1 := JGn (Un,k−1)Un,k−1 −Gn(Un,k−1)
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Summary

1 We proposed the cell-centered finite volume method to solve the cross-diffusion
system.

2 This discrete system preserves the structural properties of the solution.

We want to solve the cross-diffusion problem for a wide variety of cross-diffusion matrices
A. It involves high computational cost.

We construct a reduced model to save computational time that preserves the
structural properties of the solution.

9/33



Introduction Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments Conclusion

Outline

1 Introduction

2 Model problem and discretization

3 A first POD reduced model

4 A structure preserving POD reduced model

5 Numerical experiments

6 Conclusion

9/33



Introduction Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments Conclusion

The offline stage

Some notation: To each cross-diffusion matrix A = (ai,j) is associated a parameter µ ∈ P.

∀µ ∈ P ←→ a solution Un
µ ∈ RNs×Ne .

The offline stage:
1 We compute snapshots of solution Un

µ ∈ RNs×Ne for µ ∈ Poff ⊂ P (a certain number of
so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

M =
[
Mµ1 Mµ2 · · · Mµp?

]
∈ RNs×Ne,Nt×p? .

2 SVD decomposition : M = V︸︷︷︸
∈RNs×Ne,Ns×Ne

× S︸︷︷︸
∈RNs×Ne,Nt×p?

× WT︸︷︷︸
∈RNt×p?,Nt×p?

.

Here, Sii =
√
σi for 1 ≤ i ≤ min(Ns × Ne,Nt × p?) and σi are the eigenvalues of MMT .

3 Select r columns from the matrice V as follows :
∑

k≥r+1 σ
2
k ≤ ε for ε ≥ 0 a fixed

tolerance. ⇒We obtain a reduced basis Vr = (V1, · · · ,Vr ).
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1 We compute snapshots of solution Un

µ ∈ RNs×Ne for µ ∈ Poff ⊂ P (a certain number of
so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

M =
[
Mµ1 Mµ2 · · · Mµp?

]
∈ RNs×Ne,Nt×p? .

2 SVD decomposition : M = V︸︷︷︸
∈RNs×Ne,Ns×Ne

× S︸︷︷︸
∈RNs×Ne,Nt×p?

× WT︸︷︷︸
∈RNt×p?,Nt×p?

.

Here, Sii =
√
σi for 1 ≤ i ≤ min(Ns × Ne,Nt × p?) and σi are the eigenvalues of MMT .

3 Select r columns from the matrice V as follows :
∑

k≥r+1 σ
2
k ≤ ε for ε ≥ 0 a fixed

tolerance. ⇒We obtain a reduced basis Vr = (V1, · · · ,Vr ).
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The online stage

For each µ ∈ P, at each time step n = 1 · · ·Nt, the solution of the reduced model denoted
by Ũn

µ ∈ RNs×Ne is expressed in the basis (V 1, · · · ,V r ) as

Ũn
µ :=

r∑
k=1

ck ,n
µ V k , Ũ0

µ := Πspan(V 1,··· ,V r )U
0.

How to derive the expression of the coefficients ck ,n
µ ?

We define the function H : Rr → Rr by Hl(cn
µ) := 〈V l ,Gn(Ũn

µ)〉 ∀1 ≤ l ≤ r .
The vector cn

µ ∈ Rr is solution to the nonlinear problem

H(cn
µ) = 0.

Remark
This reduced model does not necessarily preserves the structural properties of the
numerical solution.
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The offline stage

1 Compute snapshots of solutions.
2 Compute the matrix M ∈ RNs×Ne,Nt×p? defined by

M =
[
Mµ1 Mµ2 · · · Mµp?

]
∈ RNs×Ne,Nt×p? .

where each matrix Mµα ∈ RNs×Ne,Nt are defined by
[
Mµα

]
i,K = zn

µα,i,K = ln(un
µα,i,K ).

3 SVD decomposition

M = V︸︷︷︸
∈RNs×Ne,Ns×Ne

× S︸︷︷︸
∈RNs×Ne,Nt×p?

× WT︸︷︷︸
∈RNt×p?,Nt×p?

.

4 Select r basis functions. Add to the matrix Vr Ns identity bloc matrices as follows
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Example: Ns = 3

Vr?
=



v1
1,K 1 v2

1,K 1 · · · v r
1,K 1 1 0 0

v1
1,K 2 v2

1,K 2 · · · v r
1,K 2 1 0 0

...
...

...
...

...
...

...
v1

1,KNe
v2

1,KNe
· · · v r

1,KNe
1 0 0

v1
2,K 1 v2

2,K 1 · · · v r
2,K 1 0 1 0

v1
2,K 2 v2

2,K 2 · · · v r
2,K 2 0 1 0

...
...

...
...

...
...

...
v1

2,KNe
v2

2,KNe
· · · v r

2,KNe
0 1 0

v1
3,K 1 v2

3,K 1 · · · v r
3,K 1 0 0 1

v1
3,K 2 v2

3,K 2 · · · v r
3,K 2 0 0 1

...
...

...
...

...
...

...
v1

3,KNe
v2

3,KNe
· · · v r

3,KNe
0 0 1
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Remark

The matrix Vr? is not orthogonal. We employ a QR factorization on the matrix Vr? so that
Vr?

= Q× R̃ where Q ∈ RNs×Ne,r? is orthogonal, and R̃ ∈ Rr?,r? is upper triangular.

For each µ ∈ P, at each time step n = 1 · · ·Nt, we define a “temporary reduced solution”
denoted by Z n

µ ∈ RNs×Ne . It is expressed in the basis (Q1, · · · ,Qr?) as

Z n
µ :=

r?∑
k=1

ck ,n
µ Qk and Z 0

µ := ΠSpan(Q1,··· ,Qr? )Z
0
µ where z0

µ,i,K := ln(u0
µ,i,K ).

Definition of the coefficient ck ,n
µ

Solve the nonlinear problem H l(cn
µ) = 0 with H l(cn

µ) :=
〈

Ql ,Gn(Un
µ)
〉
∀1 ≤ l ≤ r?.

How can we construct a structure preserving reduced model ?
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Safe reduced solution

Un
µ := (un

µ,i,K )i∈[1,Ns],K∈Th
with un

µ,i,K := exp(zn
µ,i,K )/

Ns∑
j=1

exp(zn
µ,j,K ).

Structural properties of the reduced solution
1 Positivity un

µ,i,K > 0 ∀µ ∈ P ∀K ∈ Th ∀i ∈ [1,Ns] ∀n ∈ [0,Nt].

2 Volume filling constraint:
∑Ns

i=1 un
µ,i,K = 1 ∀µ ∈ P ∀K ∈ Th, ∀n ∈ [1,Nt].

3 mass conservation∑
K∈Th

|K |un
µ,i,K =

∑
K∈Th

|K |un−1
µ,i,K =

∫
Ω

u0
i (x) dx ∀i ∈ [1,Ns] ∀n ∈ [1,Nt] .

4 The discrete counterpart of the entropy decays along time

ETh (Un
µ)− ETh (Un−1

µ ) + ∆tn min
i,j

ai,j
∑
σ∈E int

h

Ns∑
i=1

τσun
µ,iσ

(
DKσ(ln(un

µ,i))
)2 ≤ 0 ∀n ∈ [1,Nt] .
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First test case

We consider 3 species.

Ω is a one dimensional domain consisting in a segment of length L = 1m.

∆x = 10−2.

Final simulation time T = 0.5 s and ∆t = 5× 10−4 s.

Compute µ = 20 snapshots of solutions.
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Initial condition

discontinuous solution

0.0 0.2 0.4 0.6 0.8 1.0
abcissa

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

So
lu

tio
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u1

t=0

0.0 0.2 0.4 0.6 0.8 1.0
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0.1
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lu
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u2

t=0
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0.3
0.4
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0.6
0.7
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So
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Shape of the solution

Aµ :=

 0 0.75 0.73
0.75 0 0.84
0.73 0.84 0



0.0 0.2 0.4 0.6 0.8 1.0
abcissa

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So
lu

tio
n Solution u1 at n = 10

Solution u2 at n = 10
Solution u3 at n = 10

0.0 0.2 0.4 0.6 0.8 1.0
abcissa

0.0

0.1
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0.5

0.6

So
lu
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n

Solution u1 at n = 40
Solution u2 at n = 40
Solution u3 at n = 40

0.0 0.2 0.4 0.6 0.8 1.0
abcissa
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0.2

0.3

0.4
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0.6

So
lu

tio
n

Solution u1 at n = 400
Solution u2 at n = 400
Solution u3 at n = 400

Typical behavior of a cross-diffusion system
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Structural properties of the solution

0 200 400 600 800 1000
time step

0.06

0.08

0.10

0.12

0.14

0.16

0.18

So
lu

tio
n

positivity

0 200 400 600 800 1000
time step

0.9982
0.9984
0.9986
0.9988
0.9990
0.9992
0.9994
0.9996
0.9998

So
lu

tio
n

Volume filling constraint

PU(tn) := inf
µ∈Poff

inf
K∈Th

Un
µ,K SU(tn) := inf

µ∈Poff
inf

K∈Th

Ns∑
i=1

Un
µ,i,K
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
 parameter 

0.0005

0.0010

0.0015

0.0020

0.0025

 m
as

s

mass deviation from initial mass

EU(µ) := max
i∈J1,NsK

max
n∈J1,NtK

∣∣∣∣∣∣
∑

K∈Th

|K |Un
µ,i,K −

∫
Ω

ui
0(x) dx

∣∣∣∣∣∣
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Structural properties of the Solution

Aµ0 :=

 0 0.75 0.73
0.75 0 0.84
0.73 0.84 0

Aµ9 =

 0 0.93 0.71
0.93 0 0.44
0.71 0.44 0

 Aµ17 =

 0 0.37 0.004
0.37 0 0.72
0.004 0.72 0
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First POD reduced model

Violation of the structural properties of the solution
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A0 =

 0 0.93 0.71
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 A17 =

 0 0.37 0.004
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Second POD reduced model
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Second test case

We consider the PVD process : 4 species.

Ω is a one dimensional domain consisting in a segment of length L = 1m.

∆x = 10−2.

Final simulation time T = 0.5 s and ∆t = 2.5× 10−4 s.

Compute µ = 20 snapshots of solutions.
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Initial condition

We take

w0
1 (x) = e−25(x−0.5)2

, w0
2 (x) = x2 + ε, w3(x) = 1− e−25(x−0.5)2

, w4(x) = | sin(πx)|

where ε = 10−6.

To satisfy the volume filling constraint property we use a renormalization

ui
0(xj) =

w0
i (xj)∑Ns

l=1 w0
l (xj)

where xj , j ∈ [1,Ne] are the cell centers of the mesh.
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Fine solution

Cross-diffusion matrix

A17 =


0 0.64 0.31 0.53

0.64 0 0.99 0.84
0.32 0.99 0 0.99
0.53 0.84 0.99 0
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Properties of the solution
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i (x) dx

∣∣∣∣∣∣
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First POD reduced model
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Ũn
µ,i,K max

µ∈Poff
max

i∈J1,NsK
max

n∈J1,NtK

∣∣∣∣∣∣
∑

K∈Th

|K |Un
µ,i,K −

∫
Ω

u0
i (x) dx

∣∣∣∣∣∣
Violation of the physical properties.

31/33



Introduction Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments Conclusion

Safe POD reduced model
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Conclusion and perspectives

Conclusion

We constructed an efficient reduced model preserving the physical properties of the
cross-diffusion system.

Perspectives

Construct a reduced basis method with a posteriori estimators for high accuracy.

EIM algorithm to reduce the computational time.
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