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Introduction
L]

Motivation

Numerical simulation of the PVD process for the fabrication of CIGS
(Copper-Indium-Galium-Selenium) solar panels

@ The chemical species are injected under gazeous
form in a hot chamber.

@ A cross-diffusion process occurs and the local
volumic fraction of the species evolve with respect
to time.

© goal : optimize the injected flux to obtain high
performance solar cells.

The numerical simulation of the cross-diffusion system is highly expensive.

Need to construct robust schemes to reduce the computational time.
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Model problem and discretization
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Model Problem

Q c R? : polygonal domain, T > 0 : final simulation time, Ns : number of chemical species.

Cross-diffusion model

Ns
Ot — V - (Z a; j (UjVU,‘ — U,'VU/')) =0 in Qx [0, T], fori e [1 , Ns] R
j=1

Ns
(Z aj j (U/VU,’ — U,'VUj)) -n=0 on 09 x [0, T], fori e [1 , Ns] ,
=1

ui(x,0)=uf(x) in Q, forie[1,Ns].

@ Assume A € RNsNs A = (g;;)1<; j<n, is sSymmetric with nonnegative coefficients and
that its diagonal terms vanish.
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Model problem and discretization
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Gradient flow structure

Entropy functional:

Ns
E(u) = /Q S U In(u(x)) dx U= (U)iegr g
i=1

The cross-diffusion system has a gradient flow structure and can be rewritten as
oty — V - (C(u)VdE(u))
(C(u)VdE(u))-n=0
u(x,0)=u’(x) in Q.

@ C(u) € RNsNs : mobility matrix

@ dE: Entropy differential defined by

0E(u)
8U,'

(dE(u)); =
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Model problem and discretization
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There exists a weak solution u satisfying

Ns Ns
ue [L2 (R+,H1(Q,RNs))} and du e

loc

(R, [H(@, RNS)}/)}

loc
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Model problem and discretization
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There exists a weak solution u satisfying

Ns / Ns
ue | (R H(QR¥)| ™ and o e |LE(RY, [H'(@QRY)] )}
Structural properties of the solution: Consider u® = (19, -+, 1 ) € R}* such that

SN, w9 =1 and HuOHLOO(Q) < +oo. Then,
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Model problem and discretization
[e]e] lelelele]

There exists a weak solution u satisfying

Ns Ns
ue [L2 (R+,H1(Q,RNs))} and du e

loc

2. (R, [H'(@,RM)] ’)}

Structural properties of the solution: Consider u® = (uf,--- ,u} ) € RN such that
SR uf = 1and |60 gy < +oo. Then,

@ mass conservation:/

Ui(x, t)dx:/ u0(x)dx ¥t € [0,T], Vi€ [1,Ne].
Q Q
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Model problem and discretization
[e]e] lelelele]

There exists a weak solution u satisfying

Ns / Ns
ue | (R H(QR¥)| ™ and o e |LE(RY, [H'(@QRY)] )}
Structural properties of the solution: Consider u® = (19, -+, 1 ) € R}* such that

SN, w9 =1 and HuOHLOO(Q) < +oo. Then,

@ mass conservation:/
Q

@ positivity: ui(x,t) >0 VxeQ, Vtel[0,T], Viel[l,Ng].

Ui(x, t)dx:/ u0(x)dx ¥t € [0,T], Vi€ [1,Ne].
Q
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Model problem and discretization
[e]e] lelelele]

There exists a weak solution u satisfying

Ns Ns
ue [L2 (R+,H1(Q,RNs))} and du e

loc

(R, [H(@, RNS)}/)}

Structural properties of the solution: Consider u® = (19, -+, 1 ) € R}* such that
SN, w9 =1 and [6°]] ooy < +oo- Then,

@ mass conservation:/
Q

@ positivity: ui(x,t) >0 VxeQ, Vtel[0,T], Viel[l,Ng].

@ preservation of the volume filling constraint: u € R such that 3", u; = 1.

Ui(x, t)dx:/ u0(x)dx ¥t € [0,T], Vi€ [1,Ne].
Q
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Model problem and discretization
[e]e] lelelele]

There exists a weak solution u satisfying

Ns Ne
ue | (R H(QR)|™ and oue Lﬁ,c(R+,[H1(Q,RNS)}/)} .

Structural properties of the solution: Consider u® = (19, -+, 1 ) € R}* such that
SN, w9 =1 and [6°]] ooy < +oo- Then,

@ mass conservation:/
Q

@ positivity: ui(x,t) >0 VxeQ, Vtel[0,T], Viel[l,Ng].

© preservation of the volume filling constraint: u RNS such that up=1.
/ 1

Ui(x, t)dx:/ u0(x)dx ¥t € [0,T], Vi€ [1,Ne].
Q

Qo entropy-entropy dissipation relation

/Q S au(N)u(0IV In(u(x)) — ¥ In(u(x)F dx = 0.

1<i<j<Ns .



Model problem and discretization
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The cell-centered finite Volume method
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Model problem and discretization
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The cell-centered finite Volume method

@ N unknowns per cell U" := (u{’K)KeT,h,-E[[1 Ny € RNex N
o U e RNxNe where uf, = K] / u0(x) dx

o FV scheme find U" € RNexNs gatisfying
n

UK K
‘K| I I +Z IK{T

n_,n n
Droui = uilp — g o€k
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Model problem and discretization
[e]e]e] le]ele)

The cell-centered finite Volume method

@ N unknowns per cell U" := (u{’K)KeT,h,-E[[1 Ny € RNex N

o U e RNxNe where uf, = K] / u0(x) dx
o FV scheme find U" € RNexNs gatisfying
un
K / K
‘K| + Z i K{r
Droui = uilp — g o€k

N
Flux: .E{'KU(Un) = —a*TJDKJU,n — To (Z (a,-J- — a*) (UI(ZJDKJU,-H — Uir,]aDKqun)) .
j=1
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Model problem and discretization
[e]e]e] le]ele)

The cell-centered finite Volume method

@ Ns unknowns per cell U := (U )keTs ic[1Ng] € RNe*Ne
1
o U0 c RNxNe where 19, = |K\/ uf(x) dx
’ K

o FV scheme find U" € RNexNs gatisfying

u”K K
1 I
K="=+ > Flk,(
Droui = uilp — g o€k
N
. n ny . n n n n n

Flux: Ffjc,(U") := —a'7, Dk ttl 75 | 3 (a1 — &) (U, Dicota! — uf, D)

=1

i H n n
0 if mln(uLK7 Ui,Ka) <0,
u? if u=u"y, >0,
edge unknown u/, := a2 iK — YiKe
’ ik — Uiko

it Ul # U, > 0.

A/R



Model problem and discretization
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@ The main idea of the introduction of the parameter a* > 0 is to avoid unphysical
solutions Cances, Gaudeul 2020.
@ The numerical flux is conservative in the sense that for o € M, o = K|L,

n — n
Fi,LU - _Fi,KU'
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@ The main idea of the introduction of the parameter a* > 0 is to avoid unphysical
solutions Cances, Gaudeul 2020.

@ The numerical flux is conservative in the sense that for o € M, o = K|L,
Fn — _Fn
i\Lo — i,Ko*

Structural properties of the discrete solution:
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Model problem and discretization
0000e00

@ The main idea of the introduction of the parameter a* > 0 is to avoid unphysical
solutions Cances, Gaudeul 2020.

@ The numerical flux is conservative in the sense that for o € M, o = K|L,
Fn — _Fn
i\Lo — i,Ko*

Structural properties of the discrete solution:

Theorem ( )
@ mass conservation ) .. |K|ulx = [ u®(x)dx Vie[1,Ns], Vnel0,N].
Q positivity uye >0 VK € Tp, Vie[1,Ns], Vnel[0,N].
@ \Volume filling constraints: Z, u? k=1 VKeTh Vne [0, N].

© Decays of the discrete entropy E7,(U") < Ez,(U"1) Vn € [1, N] where
Er(U) = Sk, Lict K|k In(Ui k)-

7/22



Model problem and discretization
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Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

G"(U") =0 where G":RNexNs _, gNexNs
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Model problem and discretization
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Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations
G"(U") =0 where G":RNexNs _ gNexNs,

Initialization of Newton solver: Let n ¢ [1, N] and U"? € RNexNs pe fixed (typically
UnO un- 1)

Linear system : the Newton algorithm generates a sequence (U™");1, with U™ € RNexNs
solution of
A k—1 un k - B™ k— 1
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Model problem and discretization
000000

Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations
G"(U") =0 where G":RNexNs _ gNexNs,
Initialization of Newton solver: Let n ¢ [1, N] and U"? € RNexNs pe fixed (typically
uno — yn-1y.
Linear system : the Newton algorithm generates a sequence (U™");1, with U™ € RNexNs

solution of
An k—1 Un k Bn k— 1

The jacobian matrix A™ 1 ¢ RNexNs;NexNs gnd the right-hand side vector B™*~1 ¢ RNexNs
are defined by

An’k_1 — Jgn(un’k_1) and Bn,k—1 — Jgn(U”’k_1)U”’k_1 o Gn(Un,k—1)

Q/an



Model problem and discretization
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Summary

@ We proposed the cell-centered finite volume method to solve the cross-diffusion
system.

@ This discrete system preserves the structural properties of the solution.

We want to solve the cross-diffusion problem for a wide variety of cross-diffusion matrices
A. It involves high computational cost.

We construct a reduced model to save computational time that preserves the
structural properties of the solution.

qQ/21
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A first POD reduced model
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The offline stage
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A first POD reduced model
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The offline stage

Some notation: To each cross-diffusion matrix A = (a;;) is associated a parameter . € P.

Vi € P +— asolution U] € RN*Ne,
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The offline stage

Some notation: To each cross-diffusion matrix A = (a;;) is associated a parameter . € P.
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The offline stage:
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A first POD reduced model
L o)

The offline stage

Some notation: To each cross-diffusion matrix A = (a;;) is associated a parameter . € P.
Vi € P +— asolution U] € RN*Ne,

The offline stage:
@ We compute snapshots of solution U € RNs*Ne for 1, € P°ff c P (a certain number of
so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

_ Nsx Ne, N x p*
M= M, M, - M,,] € RMNND

10/2



A first POD reduced model
L o)

The offline stage

Some notation: To each cross-diffusion matrix A = (a;;) is associated a parameter . € P.
Vi € P +— asolution U] € RN*Ne,

The offline stage:
@ We compute snapshots of solution U € RNs*Ne for 1, € P°ff c P (a certain number of
so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

M = [Mf“ M“2 e M#p*] c RNSXN&NIXP*.
© SVD decomposition : M = \% » s y wT
~— NG W,

cRNs x Ne,Ns x Ne cIRNs x Ne,N¢ x p* RN xp* Ny x p*

Here, S; = /oj for 1 </ < min(Ns x Ne, N; x p*) and o; are the eigenvalues of MM,

10/2



A first POD reduced model
L o)

The offline stage

Some notation: To each cross-diffusion matrix A = (a;;) is associated a parameter . € P.
Vi € P +— asolution U] € RN*Ne,

The offline stage:
@ We compute snapshots of solution U € RNs*Ne for 1, € P°ff c P (a certain number of
so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

M = [Mf“ M“2 e M#p*] c RNSXN&NIXP*.
© SVD decomposition : M = \% » s y wT
~— NG W,

cRNs x Ne,Ns x Ne cIRNs x Ne,N¢ x p* RN xp* Ny x p*
Here, Sjj = \/o; for 1 < i < min(Ns x Ne, N, x p*) and o; are the eigenvalues of MM .

@ Select r columns from the matrice V as follows : -~ 4 0% < & for ¢ > 0 a fixed
tolerance. = We obtain a reduced basis V" = (Vy,---, V).

10/?



A first POD reduced model
oe

The online stage

For each 11 € P, at each time step n=1--- N, the solution of the reduced model denoted
by U7 € RNs*Ne is expressed in the basis (V',---, V") as

r
Nn._E: k,nysk 170 ._ 0
U# = C,u 74 s UH = Hspan(v17,,,7vr)u .
k=1

How to derive the expression of the coefficients c,’f’” ?

We define the function H : R" — R by H(¢]) := (v, G”(flg)> vi<I<r.
The vector ¢j € R is solution to the nonlinear problem

H(e)) =0.

This reduced model does not necessarily preserves the structural properties of the
numerical solution.

11/2°
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A structure preserving POD reduced model
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The offline stage

19/2°



A structure preserving POD reduced model
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The offline stage

@ Compute snapshots of solutions.
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A structure preserving POD reduced model
@000

The offline stage

@ Compute snapshots of solutions.
@ Compute the matrix M € RNsxNe:Nexp™ defined by

M = MM Muz Mﬂp*] c RNSXNenNtXP*_

where each matrix M,,, € RN*Ne are defined by [M,,. ], = 2] ; x = In(u]]_; x)-
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A structure preserving POD reduced model
@000

The offline stage

@ Compute snapshots of solutions.
@ Compute the matrix M € RNsxNe:Nexp™ defined by

M = MM Muz Mﬂp*] c RNSXNenNtXP*_

where each matrix M,,,, € RN*Ne:M are defined by [M,, ], , = 2 ;= In(u]] ;).
© SVD decomposition

M=

=

A\ X S X
~~ ~~
€RNs x Ne,Ns x Ne ERNSxNe,N[xp* ERNIXP*’NIXP*

19/2°



A structure preserving POD reduced model
@000

The offline stage

@ Compute snapshots of solutions.
@ Compute the matrix M € RNsxNe:Nexp™ defined by

M = MM Mﬂz Mﬂp*] € RNSXN&VN‘XW'

where each matrix M,,,, € RN*Ne:M are defined by [M,, ], , = 2 ;= In(u]] ;).
© SVD decomposition

M=

=

\Y X S X
~—~ ~—
Ns x Ne,Ns x Ne Ns x Ne,Ni x p* N x p* Ny x p*
€R eR €R

© Select r basis functions. Add to the matrix V' N identity bloc matrices as follows

19/2°



A structure preserving POD reduced model
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Example: N; =3

_71 B 7r -
ikt Viki Viktr 100
- - —r
Vike Vike Vike 1.0 0
—1 = —r :
ik Vs Viky, 1 00
— — —r
V%K1 VS,K1 Voxky 0 1 0
= - —r
" Voka Vako Voko 0 1 0
V) 1% V5 010
2’KNe 2’KNe 27KN5
- - —r
V?,K1 Vg,m Vaky 0 0 1
= - —r
Vaka Vzko Vo 0 0 1
—1 2 —r '
_V3,KN€, VS,KNe V3,KNe 0 0 1 |




A structure preserving POD reduced model
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The matrix V' is not orthogonal. We employ a QR factorization on the matrix V" so that
V" =Q x R where Q € RNxNe:r* js orthogonal, and R € R"""* is upper triangular.

14/2



A structure preserving POD reduced model
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The matrix V' is not orthogonal. We employ a QR factorization on the matrix V" so that
V" =Q x R where Q € RNxNe:r* js orthogonal, and R € R"""* is upper triangular.

For each ;. € P, at each time step n=1--- N, we define a “temporary reduced solution”
denoted by ZZ e RNsxNe |t s expressed in the basis (Q',--- , Q") as

=0
ZCK”Qk and zu ZZHSpan(Q Q’*)z where ZzIK |(u27i7K)'
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A structure preserving POD reduced model
[e]o] le]

The matrix V' is not orthogonal. We employ a QR factorization on the matrix V" so that
V" =Q x R where Q € RNxNe:r* js orthogonal, and R € R"""* is upper triangular.

For each ;. € P, at each time step n=1--- N, we define a “temporary reduced solution”
denoted by ZZ e RNsxNe |t s expressed in the basis (Q',--- , Q") as

=0
ZCK”Qk and zu ZZHSpan(Q Qf*)z where ZzIK |(u27i7K)'

Definition of the coefficient /"
Solve the nonlinear problem H,(¢)) = 0 with H,(c}}) := <Q’, G”(UZ)> Vi<l <re
How can we construct a structure preserving reduced model ?

14/2



A structure preserving POD reduced model
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Safe reduced solution

Ns

=N — . — — —

U, = (T k)i No ker, With T == exp(Z] 1 k)/ > exp(Z]) ) k)-
=

15/2°



A structure preserving POD reduced model
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Safe reduced solution

Ne

=N — . — — —

U, = (T k)i No ker, With T == exp(Z] 1 k)/ > exp(Z]) ) k)-
=

Structural properties of the reduced solution
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A structure preserving POD reduced model
[e]o]e] )

Safe reduced solution

Ne

=N — . — — —

U, = (T k)i No ker, With T == exp(Z] 1 k)/ > exp(Z]) ) k)-
=

Structural properties of the reduced solution
@ Positivity U,’j’,-’K >0 YueP VKeTy, Vie[1,Nsg] Vne][0,N].
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A structure preserving POD reduced model
[e]o]e] )

Safe reduced solution

Ne

=N — . — — —

U, = (T k)i No ker, With T == exp(Z] 1 k)/ > exp(Z]) ) k)-
=

Structural properties of the reduced solution
@ Positivity T, x>0 VueP VKeT, Vie[l,Ng] Vnel0,N].

Ly

@ Volume filling constraint: Z, (Unik=1 YueP VYKeTh VYnell,N]
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A structure preserving POD reduced model
[e]o]e] )

Safe reduced solution

Ns

—-—Nn — . — — —

U, = (U] kicp N keT, With T = exp(Z)) ; k)/ § exp(Z)) k)-
=

Structural properties of the reduced solution
@ Positivity U,’Z,K >0 YueP VKeTy, Vie[1,Nsg] Vne][0,N].

@ Volume filling constraint: Z, (Unik=1 YueP VYKeTh VYnell,N]

© mass conservation

MK k= > KT k= / Wx)dx Vie[1,Ns] vne[l,N].

KeTy KeTh

15/2°



A structure preserving POD reduced model
[e]o]e] )

Safe reduced solution
Ns
il — . — — —
U, = (T k)i No ker, With T == exp(Z] 1 k)/ > exp(Z]) ) k)-
j=1
Structural properties of the reduced solution
@ Positivity U,’Z,K >0 YueP VKeTy, Vie[1,Nsg] Vne][0,N].

@ Volume filling constraint: Z, (Unik=1 YueP VYKeTh VYnell,N]

© mass conservation

SKIE =S KT = /Qu?(x)dx Vie[1,Ns] ¥nel[l,N].

KeTy KeTh

© The discrete counterpart of the entropy decays along time

Er(U)) - Er,(U, )+At,,m.na,, 3 ZT,, 0" i, (Do (In(@" )% <0 vne[1,N].

int j—1
UES 15/2°
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Numerical experiments
©0000000000000000

First test case

@ We consider 3 species.

@ Q is a one dimensional domain consisting in a segment of length L = 1m.
@ Ax =102

@ Final simulationtime T =0.5sand At =5 x 10~*s.

@ Compute 1 = 20 snapshots of solutions.

1R//RR



Numerical experiments
0®000000000000000

Initial condition

@ discontinuous solution

0.8 - t—0 0.8 =0 08 - t—0
0.7 0.7 0.7
06 06 " 06
S S E}
c 0.5 c 0.5 c 0.5
o o i)
S04 S04 S04
& & &
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
abcissa abcissa abcissa
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Shape of the solution

Numerical experiments
00®00000000000000

0 075 0.73
A,:=|075 0 084
073 084 0

—e— Solution ul at n = 10
—— Solution u2 atn = 10
—a— Solution u3 at n = 10

U —e— Solution ul at n = 40
0.1 —— Solution u2 at n = 40

—=— Solution u3 at n = 40

Solution
Solution

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
abcissa abcissa

Typical behavior of a cross-diffusion system

—e— Solution ul at n = 400
—— Solution u2 at n = 400
—a— Solution u3 at n = 400

Solution

0.2 0.4 0.6 0.8 1.0
abcissa

1Q/2°



Numerical experiments

0O00@0000000000000

Structural properties of the solution

0.18 —e— positivity 0.9998 —e— Volume filling constraint
’ 0.9996
0.16 0.9994
50.14 §0.9992
2012 3 0.9990
n 9 0.9988
0.10 0.9986
0.08 0.9984
0.06 0.9982
0 200 400 600 800 1000 0 200 400 600 800 1000
time step time step
Ns
i . . n . . H n
Pu(ta) == inf inf U]« Su(ty) == inf inf Uik
PEPt KET, 1" P KETh i
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Numerical experiments
0000@000000000000

—e— mass deviation from initial mass

0.0025
0.0020

@

©

g 0.0015
0.0010
0.0005

0.0 25 50 7.5 10.0 12.5 15.0 17.5 20.0
parameter u

Eulp) = KU . — | u®(x)d
u(p) ieﬁ?l)v(s]} ngffmﬂ KGZ;| | 10,0, K o (x)dx
h

20N/’



Numerical experiments
00000®00000000000

Structural properties of the Solution

0 075 0.73 0 093 0.71 0 037 0.004
Ay,=|075 0 o084|a,=(093 0 o044| A,,=[037 0 072

073 084 O 071 044 O 0.004 0.72 0

~0.900 —=— fine problem u = 0 -0.875 —=— fine problem u =9 -0.85 —=— fine problem u = 17
-0.925 —0.900
0.950 0923
6: ’ g—o.gso
g-oo75 £ 0075
& —1.000 W 1000
-1.025 -1.025
-1.050 —-1.050
-1.075 -1.075

200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time step time step time step

n4{/22



First POD reduced model

Violation of the structural properties of the solution

Reduced solution

0.05

0.00

—0.05

—e— positivity

0 200

400 600
time step

800

1000

1.04
1.02

5

= 1.00

E]

5 0.98

-}

$0.96

?

2094
0.92
0.90

—e— Volume filling constraint

200 400 600 800 1000
time step

Numerical experiments
00000080000000000

—e— mass deviation from initial mass

00 25 50 75 10.0 12,5 15.0 17.5 20.0
parameter u
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Numerical experiments
00000008000000000

0 0.93 0.71 0 0.37 0.004
Ap=1093 0 044 A7z=[037 0 072
071 044 O 0.004 0.72 0
—#— reduced problem u = 0 —1.0640 1 —#— reduced problem u = 17
—-1.060
—1.0645
.. —1.062 5, 106501
g & ~1.0655 1
G —1.064 & —1.0660 1
—1.0665
~1.066 ~1.0670 1
. . . . . . —-1.06751 . . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000

time step time step

PleYiele)



Numerical experiments
00000000800000000

Second POD reduced model

- 0.0028

0.250 —e— positivity —e— Volume filling constraint

0.225 .04 0.0026
c c
£ 0.200 S1.02 0.0024 ﬂ I\
2 2
2 0.175 ] % 0.0022
- - 1.00 E —— mass dewatlon from initial mass
g 0.150 g 0.0020
© 0.125 g 0.98
3 2™ 0.0018
= 0.100 =

0.075 0.96 0.0016

0 200 400 600 800 1000 0 200 400 600 800 1000 0.0 25 50 7.5 10.0 125 15.0 17.5 20.0
time step time step parameter y
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Numerical experiments
000000000 e0000000
—0.900 —a#— reduced problem u =0 —-0.85 —#— reduced problem u =17
—0.925
-0.90
—0.950
> >
Q. Qo
2 —0.9751 9 -0.95
- -
C C
w —1.000 w
-1.00
—1.025
—1.050 -1.05
-1.0751, : . . . . . : r r T T
0 200 400 600 800 1000 0 200 400 600 800 1000
time step time step

The entropy decreases with respect to time.
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Numerical experiments
0000000000e000000

Second test case

@ We consider the PVD process : 4 species.

@ Q is a one dimensional domain consisting in a segment of length L = 1m.
@ Ax =102

@ Final simulation time T =0.5sand At =25 x 10~*s.

@ Compute 1 = 20 snapshots of solutions.
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Initial condition

—25(x—0.5)2

(x)=e , W) =x2+e, wa(x)=1-— e BK-0

wa(x) = |sin(mx)|
where ¢ = 1076,
To satisfy the volume filling constraint property we use a renormalization

wP (%)
Z/ § WP (x)

where x;, j € [1, Ne] are the cell centers of the mesh.

u®(x) =

n7/22
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Fine solution

Cross-diffusion matrix

0 0.64 031 053
064 0 099 0.84
032 099 0 0.99
0.53 0.84 099 O

A7 =

0.8 —e— Solution ul at n = 20 0.6 —s— Solution ul at n = 200 —e— Solution ul at n = 1700
0.7 —— Solution u2 at n = 20 —— Solution u2 at n = 200 0.5 —— Solution u2 at n = 1700
—&— Solution u3 at n = 20 0.5 —&— Solution u3 at n = 200 —&— Solution u3 at n = 1700
0.6 —=— Solution u4 at n = 20 0.4 —=— Solution u4 at n = 200 0.4 —=— Solution u4 at n = 1700
0.5 c c
2 2 203
S04 503 El
o o [=]
Vo3 a 0.2 »n 0.2
0.2 0.1
0.1
0.1 0.0
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Properties of the solution

1.000
—e— positivity —e— Volume filling constraint
0.08 0.999
c 0.06 c 0.998
2 el
=] =]
= =
s 0.04 &K 0.997
0.02 0.996
0.00 0.995
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 100012501500 17502000
time step time step
Ns
. . 5N .
Py(tn) == inf inf U, « Sg(ty) = inf inf U;uK
pePt KeT, 1 pEPT KETp = 1™
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0.0024
0.0022
0.0020
0.0018

# 0.0016

€ 0.0014
0.0012
0.0010

0.0008 1 —e— mass deviation from initial mass

0.0 25 50 7.5 10.0 12.5 15.0 17.5 20.0
parameter u

E+(1t) == max max KIU" . — | @(x)dx
o) = 3 7y | 32 K= [ 09
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First POD reduced model

£ £

é 8 —e— solution £1.000 10-2 —e— mass deviation from initial mass
@

g7 & 0.995

o 6 o

2 20.990

Z5 = 2
=

4 = 0.985 5

£ g 10-2

o3 = 0.980

c S

“

5 2 5 0.975

01 c

? 0 -'% 0.970 —e— Violation of volume filling constraint

2 =

= 0 5 10 15 20 25 30 35 'g 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

dimension of the reduced basis dimension of the reduced basis dimension of the reduced basis

Ns
. . . = 5N —0
inf _inf inf n. max max  max K|U, ; —/u- x) dx
ne[1,N] pePoff KETh 4 1,0, K nePolt ie[1,Ns] ne[1,M] Z‘ | i, K 0 I( )
i=1 KeTh
Violation of the physical properties.
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Safe POD reduced model

Positivity of the solution

0.00002631 _,_ Solution —e— Volume filling constraint property —e— safe reduced model
0.0000262 %‘ 1.04 —e— Not safe reduced model
0.0000261 g1.02
o 5
0.0000260 £100 5101
0.0000259 E 0.98
E
0.0000258 S 0.96
0.0000257
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 10° . ) 10 )
dimension of reduced basis dimension of the reduced basis dimension of the reduced basis
Ns
inf inf inf U inf inf inf U
nel1,N] pepet Ken MK nelt N peport KETh
1
2
i ired n, red
max ‘ u,—u; ‘ = max_ max ‘ ik — Ui
i€[1,Ns] Leo(Poif, L2(Q), L= ([0, T])) ueP"“ nelVND \ o7
h
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Conclusion and perspectives

Conclusion

@ We constructed an efficient reduced model preserving the physical properties of the
cross-diffusion system.

Perspectives
@ Construct a reduced basis method with a posteriori estimators for high accuracy.

@ EIM algorithm to reduce the computational time.

nN M
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