

Structure-preserving reduced basis method for cross-diffusion systems

JAD DABAGHI, Virginie Ehrlacher

École des Ponts ParisTech (CERMICS) & INRIA Paris (MATHERIALS)

SIAM UQ-22 Conference 12nd April 2022

ParisTech

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
•0					

Outline

- 2 Model problem and discretization
- 3 A first POD reduced model
- 4 A structure preserving POD reduced model
- 5 Numerical experiments
- 6) Conclusion

Motivation

Numerical simulation of the PVD process for the fabrication of CIGS (Copper-Indium-Galium-Selenium) solar panels

- The chemical species are injected under gazeous form in a hot chamber.
- A cross-diffusion process occurs and the local volumic fraction of the species evolve with respect to time.
- goal : optimize the injected flux to obtain high performance solar cells.

The numerical simulation of the cross-diffusion system is highly expensive.

Need to construct robust schemes to reduce the computational time.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	0000000				

Outline

Introduction

- 2 Model problem and discretization
 - 3 A first POD reduced model
 - A structure preserving POD reduced model
- 5 Numerical experiments
- 6) Conclusion

Introduction Model problem and discretization A first POD reduced model ooo

Model Problem

 $\Omega \subset \mathbb{R}^2$: polygonal domain, T > 0: final simulation time, N_s : number of chemical species. Cross-diffusion model

$$\partial_t u_i - \boldsymbol{\nabla} \cdot \left(\sum_{j=1}^{N_s} a_{i,j} \left(u_j \boldsymbol{\nabla} u_i - u_i \boldsymbol{\nabla} u_j \right) \right) = 0 \quad \text{in} \quad \Omega \times [0, T], \text{ for } i \in [1, N_s],$$
$$\left(\sum_{j=1}^{N_s} a_{i,j} \left(u_j \boldsymbol{\nabla} u_i - u_i \boldsymbol{\nabla} u_j \right) \right) \cdot \boldsymbol{n} = 0 \quad \text{on} \quad \partial\Omega \times [0, T], \text{ for } i \in [1, N_s],$$
$$u_i(\boldsymbol{x}, 0) = u_i^{0}(\boldsymbol{x}) \quad \text{in} \quad \Omega, \text{ for } i \in [1, N_s].$$

Assume A ∈ ℝ^{N_s, N_s}, A = (a_{i,j})_{1≤i,j≤N_s} is symmetric with nonnegative coefficients and that its diagonal terms vanish.

Gradient flow structure

Entropy functional:

$$E(\boldsymbol{u}) := \int_{\Omega} \sum_{i=1}^{N_s} u_i(x) \ln(u_i(x)) \, \mathrm{dx} \quad \boldsymbol{u} = (u_i)_{i \in [\![1,N_s]\!]}$$

The cross-diffusion system has a gradient flow structure and can be rewritten as

 $\partial_t \boldsymbol{u} - \boldsymbol{\nabla} \cdot (\mathbb{C}(\boldsymbol{u})\boldsymbol{\nabla} d\boldsymbol{E}(\boldsymbol{u}))$ $(\mathbb{C}(\boldsymbol{u})\boldsymbol{\nabla} d\boldsymbol{E}(\boldsymbol{u})) \cdot \boldsymbol{n} = 0$ $\boldsymbol{u}(\boldsymbol{x}, 0) = \boldsymbol{u}^0(\boldsymbol{x}) \quad \text{in} \quad \Omega.$

- $\mathbb{C}(\boldsymbol{u}) \in \mathbb{R}^{N_s, N_s}$: mobility matrix
- *dE*: Entropy differential defined by

$$(dE(\boldsymbol{u}))_i := \frac{\partial E(\boldsymbol{u})}{\partial u_i} = 1 + \ln(u_i).$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	000000				

There exists a weak solution u satisfying

$$oldsymbol{u} \in \left[\mathcal{L}^2_{\mathrm{loc}}(\mathbb{R}^+, \mathcal{H}^1(\Omega, \mathbb{R}^{N_s}))
ight]^{N_s} \quad \textit{and} \quad \partial_t oldsymbol{u} \in \left[\mathcal{L}^2_{\mathrm{loc}}(\mathbb{R}^+, \left[\mathcal{H}^1(\Omega, \mathbb{R}^{N_s})
ight]')
ight]^{N_s}.$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	0000000				

There exists a weak solution u satisfying

$$oldsymbol{\mu} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))
ight]^{N_s} \quad \textit{and} \quad \partial_t oldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})
ight]')
ight]^{N_s}.$$

Structural properties of the solution: Consider $\boldsymbol{u}^0 = (\boldsymbol{u}_1^0, \cdots, \boldsymbol{u}_{N_s}^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\boldsymbol{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then,

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	0000000				

There exists a weak solution u satisfying

$$\boldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s})) \right]^{N_s} \quad \textit{and} \quad \partial_t \boldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s}) \right]') \right]^{N_s}.$$

Structural properties of the solution: Consider $\boldsymbol{u}^0 = (\boldsymbol{u}_1^0, \cdots, \boldsymbol{u}_{N_s}^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\boldsymbol{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then, **1** mass conservation: $\int_{\Omega} u_i(x, t) \, dx = \int_{\Omega} u_i^0(x) \, dx \quad \forall t \in [0, T], \ \forall i \in [1, N_s].$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	0000000				

There exists a weak solution u satisfying

$$oldsymbol{u} \in \left[\mathcal{L}^2_{ ext{loc}}(\mathbb{R}^+, \mathcal{H}^1(\Omega, \mathbb{R}^{N_s}))
ight]^{N_s} \quad \textit{and} \quad \partial_t oldsymbol{u} \in \left[\mathcal{L}^2_{ ext{loc}}(\mathbb{R}^+, \left[\mathcal{H}^1(\Omega, \mathbb{R}^{N_s})
ight]')
ight]^{N_s}.$$

Structural properties of the solution: Consider $\boldsymbol{u}^0 = (\boldsymbol{u}_1^0, \cdots, \boldsymbol{u}_{N_s}^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\boldsymbol{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then, mass conservation: $\int_{\Omega} u_i(x,t) \, dx = \int_{\Omega} u_i^0(x) \, dx \quad \forall t \in [0, T], \quad \forall i \in [1, N_s].$ positivity: $u_i(x,t) > 0 \quad \forall x \in \Omega, \quad \forall t \in [0, T], \quad \forall i \in [1, N_s].$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	0000000				

There exists a weak solution u satisfying

$$\boldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s})) \right]^{N_s} \quad \textit{and} \quad \partial_t \boldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s}) \right]') \right]^{N_s}.$$

Structural properties of the solution: Consider $\boldsymbol{u}^0 = (\boldsymbol{u}_1^0, \cdots, \boldsymbol{u}_{N_s}^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\boldsymbol{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then, mass conservation: $\int_{\Omega} u_i(x, t) \, dx = \int_{\Omega} u_i^0(x) \, dx \quad \forall t \in [0, T], \quad \forall i \in [1, N_s].$ positivity: $u_i(x, t) > 0 \quad \forall x \in \Omega, \quad \forall t \in [0, T], \quad \forall i \in [1, N_s].$

() preservation of the volume filling constraint: $\boldsymbol{u} \in \mathbb{R}^{N_s}_+$ such that $\sum_{i=1}^{N_s} u_i = 1$.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	0000000				

There exists a weak solution u satisfying

$$\boldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s})) \right]^{N_s} \quad \textit{and} \quad \partial_t \boldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s}) \right]') \right]^{N_s}.$$

Structural properties of the solution: Consider $\boldsymbol{u}^0 = (\boldsymbol{u}_1^0, \cdots, \boldsymbol{u}_{N_s}^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\boldsymbol{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then, mass conservation: $\int_{\Omega} u_i(x,t) \, dx = \int_{\Omega} u_i^0(x) \, dx \quad \forall t \in [0, T], \ \forall i \in [1, N_s].$

2 positivity: $u_i(x,t) \ge 0$ $\forall x \in \Omega$, $\forall t \in [0,T]$, $\forall i \in [1, N_s]$.

9 preservation of the volume filling constraint: $\boldsymbol{u} \in \mathbb{R}^{N_s}_+$ such that $\sum_{i=1}^{N_s} u_i = 1$.

entropy-entropy dissipation relation

$$\frac{d}{dt}E(\boldsymbol{u}) + \int_{\Omega}\sum_{1\leq i< j\leq N_s}a_{i,j}u_i(x)u_j(x)|\boldsymbol{\nabla}\ln(u_i(x)) - \boldsymbol{\nabla}\ln(u_j(x))|^2\,\mathrm{d}x = 0.$$

Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments

The cell-centered finite Volume method

Introduction 00000000

Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments

Conclusion

The cell-centered finite Volume method

• N_s unknowns per cell $\boldsymbol{U}^n := (u_{i,K}^n)_{K \in \mathcal{T}_h, i \in [\![1,N_s]\!]} \in \mathbb{R}^{N_e imes N_s}$

•
$$oldsymbol{U}^0 \in \mathbb{R}^{N_s imes N_e}$$
 where $u^0_{i,K} = rac{1}{|K|} \int_K u^{0}_i(x) \, \mathrm{d}x$

FV scheme : find
$$\boldsymbol{U}^n \in \mathbb{R}^{N_{\boldsymbol{\theta}} \times N_{\boldsymbol{\sigma}}}$$
 satisfying
 $|\mathcal{K}| \frac{u_{i,\mathcal{K}}^n - u_{i,\mathcal{K}}^{n-1}}{\Delta t_n} + \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \mathcal{F}_{i,\mathcal{K}\sigma}^n(\boldsymbol{U}^n) = 0$

Introduction 00000000

Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments

Conclusion

The cell-centered finite Volume method

F

• N_s unknowns per cell $\boldsymbol{U}^n := (u_{i,K}^n)_{K \in \mathcal{T}_h, i \in \llbracket 1, N_s \rrbracket} \in \mathbb{R}^{N_\theta imes N_s}$

•
$$oldsymbol{U}^0 \in \mathbb{R}^{N_s imes N_e}$$
 where $u^0_{i,K} = rac{1}{|K|} \int_K u^{0}_i(x) \,\mathrm{d}x$

• FV scheme : find $\boldsymbol{U}^n \in \mathbb{R}^{N_e \times N_s}$ satisfying n_1

$$|\mathcal{K}|\frac{u_{i,\mathcal{K}}^{n}-u_{i,\mathcal{K}}^{n}}{\Delta t_{n}}+\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}}\mathcal{F}_{i,\mathcal{K}\sigma}^{n}(\boldsymbol{U}^{n})=0$$

$$\mathsf{lux:} \hspace{0.2cm} \mathcal{F}^{n}_{i,\mathcal{K}\sigma}(\boldsymbol{U}^{n}) := -\boldsymbol{a}^{\star}\tau_{\sigma} D_{\mathcal{K}\sigma} \boldsymbol{u}^{n}_{i} - \tau_{\sigma} \left(\sum_{j=1}^{N} \left(\boldsymbol{a}_{i,j} - \boldsymbol{a}^{\star} \right) \left(\boldsymbol{u}^{n}_{j,\sigma} D_{\mathcal{K}\sigma} \boldsymbol{u}^{n}_{i} - \boldsymbol{u}^{n}_{i,\sigma} D_{\mathcal{K}\sigma} \boldsymbol{u}^{n}_{j} \right) \right).$$

Introduction 00000000

Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments

Conclusion

The cell-centered finite Volume method

•
$$N_{s}$$
 unknowns per cell $\boldsymbol{U}^{n} := (u_{i,K}^{n})_{K \in \mathcal{T}_{h}, i \in [\![1,N_{s}]\!]} \in \mathbb{R}^{N_{e} \times N_{s}}$
• $\boldsymbol{U}^{0} \in \mathbb{R}^{N_{s} \times N_{e}}$ where $u_{i,K}^{0} = \frac{1}{|K|} \int_{K} u_{i}^{0}(x) dx$
• FV scheme : find $\boldsymbol{U}^{n} \in \mathbb{R}^{N_{e} \times N_{s}}$ satisfying
 $|K| \frac{u_{i,K}^{n} - u_{i,K}^{n-1}}{\Delta t_{n}} + \sum_{\sigma \in \mathcal{E}_{K}} \mathcal{F}_{i,K\sigma}^{n}(\boldsymbol{U}^{n}) = 0$
 $K_{\sigma}(\boldsymbol{U}^{n}) := -a^{\star}\tau_{\sigma}D_{K\sigma}\boldsymbol{u}_{i}^{n} - \tau_{\sigma}\left(\sum_{j=1}^{N} (a_{i,j} - a^{\star}) \left(u_{j,\sigma}^{n}D_{K\sigma}\boldsymbol{u}_{i}^{n} - u_{i,\sigma}^{n}D_{K\sigma}\boldsymbol{u}_{j}^{n}\right)\right).$
edge unknown $u_{i,\sigma}^{n} := \begin{cases} 0 & \text{if } \min(u_{i,K}^{n}, u_{i,K\sigma}^{n}) < 0, \\ u_{i,K}^{n} & \text{if } u_{i,K}^{n} = u_{i,K\sigma}^{n} \ge 0, \\ \frac{u_{i,K}^{n} - u_{i,K\sigma}^{n}}{\ln(u_{i,K}^{n}) - \ln(u_{i,K\sigma}^{n})} & \text{if } u_{i,K}^{n} \neq u_{i,K\sigma}^{n} \ge 0. \end{cases}$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	00000000				

- The main idea of the introduction of the parameter a^{*} > 0 is to avoid unphysical solutions Cancès, Gaudeul 2020.
- The numerical flux is conservative in the sense that for $\sigma \in \mathcal{E}_h^{\text{int}}$, $\sigma = K|L$, $F_{i,L\sigma}^n = -F_{i,K\sigma}^n$.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	00000000				

- The main idea of the introduction of the parameter $a^* > 0$ is to avoid unphysical solutions Cancès, Gaudeul 2020.
- The numerical flux is conservative in the sense that for $\sigma \in \mathcal{E}_h^{\text{int}}$, $\sigma = K|L$, $F_{i,L\sigma}^n = -F_{i,K\sigma}^n$.

Structural properties of the discrete solution:

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	00000000				

- The main idea of the introduction of the parameter a* > 0 is to avoid unphysical solutions Cancès, Gaudeul 2020.
- The numerical flux is conservative in the sense that for $\sigma \in \mathcal{E}_h^{\text{int}}$, $\sigma = K|L$, $F_{i,L\sigma}^n = -F_{i,K\sigma}^n$.

Structural properties of the discrete solution:

Theorem (Cancès, Gaudeul 2020)

- mass conservation $\sum_{K \in \mathcal{T}_h} |K| u_{i,K}^n = \int_{\Omega} u_i^0(x) \, \mathrm{dx} \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$
- **2** positivity $u_{i,K}^n > 0$ $\forall K \in \mathcal{T}_h$, $\forall i \in [1, N_s]$, $\forall n \in [0, N_t]$.
- Solume filling constraints: $\sum_{i=1}^{N_s} u_{i,K}^n = 1 \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [0, N_t].$
- Decays of the discrete entropy $E_{\mathcal{T}_h}(\boldsymbol{U}^n) \leq E_{\mathcal{T}_h}(\boldsymbol{U}^{n-1}) \quad \forall n \in [1, N_t]$ where $E_{\mathcal{T}_h}(\boldsymbol{U}) := \sum_{K \in \mathcal{T}_h} \sum_{i=1}^{N_s} |K| u_{i,K} \ln(u_{i,K}).$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
	00000000				

Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

$$G^n(oldsymbol{U}^n)=0$$
 where $G^n:\mathbb{R}^{N_e imes N_s} o\mathbb{R}^{N_e imes N_s}$

Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

$$G^n(oldsymbol{U}^n)=0$$
 where $G^n:\mathbb{R}^{N_e imes N_s} o\mathbb{R}^{N_e imes N_s}$

Initialization of Newton solver: Let $n \in [\![1, N_t]\!]$ and $U^{n,0} \in \mathbb{R}^{N_e \times N_s}$ be fixed (typically $U^{n,0} = U^{n-1}$).

Linear system : the Newton algorithm generates a sequence $(\boldsymbol{U}^{n,k})_{k\geq 1}$, with $\boldsymbol{U}^{n,k} \in \mathbb{R}^{N_e \times N_s}$ solution of

$$\mathbb{A}^{n,k-1} \boldsymbol{U}^{n,k} = \boldsymbol{B}^{n,k-1}.$$

Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

$$G^n(oldsymbol{U}^n)=0$$
 where $G^n:\mathbb{R}^{N_e imes N_s} o\mathbb{R}^{N_e imes N_s},$

Initialization of Newton solver: Let $n \in [\![1, N_t]\!]$ and $U^{n,0} \in \mathbb{R}^{N_e \times N_s}$ be fixed (typically $U^{n,0} = U^{n-1}$).

Linear system : the Newton algorithm generates a sequence $(\boldsymbol{U}^{n,k})_{k\geq 1}$, with $\boldsymbol{U}^{n,k} \in \mathbb{R}^{N_e \times N_s}$ solution of

$$\mathbb{A}^{n,k-1}\boldsymbol{U}^{n,k}=\boldsymbol{B}^{n,k-1}.$$

The jacobian matrix $\mathbb{A}^{n,k-1} \in \mathbb{R}^{N_e \times N_s, N_e \times N_s}$ and the right-hand side vector $\mathbf{B}^{n,k-1} \in \mathbb{R}^{N_e \times N_s}$ are defined by

$$\mathbb{A}^{n,k-1} := \mathbb{J}_{G^n}(\boldsymbol{U}^{n,k-1}) \quad \text{and} \quad \boldsymbol{B}^{n,k-1} := \mathbb{J}_{G^n}(\boldsymbol{U}^{n,k-1})\boldsymbol{U}^{n,k-1} - G^n(\boldsymbol{U}^{n,k-1})$$

Introduction 00	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
~					

Summary

- We proposed the cell-centered finite volume method to solve the cross-diffusion system.
- ② This discrete system preserves the structural properties of the solution.
- We want to solve the cross-diffusion problem for a wide variety of cross-diffusion matrices \mathbb{A} . It involves high computational cost.

We construct a reduced model to save computational time that preserves the structural properties of the solution.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
		000			

Outline

Introduction

- 2 Model problem and discretization
- A first POD reduced model
 - A structure preserving POD reduced model
- 5 Numerical experiments
- 6) Conclusion

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
		000			

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
		000			

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

 $\forall \mu \in \mathcal{P} \longleftrightarrow$ a solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
		000			

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow$$
 a solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$

The offline stage:

Introduction Model problem and discretization of first POD reduced model of occurre preserving POD reduced model occurre p

The offline stage

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow$$
 a solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$

The offline stage:

We compute snapshots of solution Uⁿ_µ ∈ ℝ^{N_s×N_e for µ ∈ P^{off} ⊂ P (a certain number of so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix}

$$\mathbb{M} = \begin{bmatrix} \mathbb{M}_{\mu_1} & \mathbb{M}_{\mu_2} & \cdots & \mathbb{M}_{\mu_{p^*}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}$$

Introduction Model problem and discretization of the second secon

The offline stage

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow$$
 a solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$

The offline stage:

We compute snapshots of solution Uⁿ_µ ∈ ℝ^{N_s×N_e for µ ∈ P^{off} ⊂ P (a certain number of so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix}

$$\mathbb{M} = \begin{bmatrix} \mathbb{M}_{\mu_1} & \mathbb{M}_{\mu_2} & \cdots & \mathbb{M}_{\mu_{p^*}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}$$

3 SVD decomposition : $\mathbb{M} = \underbrace{\mathbb{V}}_{\in \mathbb{R}^{N_{s} \times N_{e}}, N_{s} \times N_{e}} \times \underbrace{\mathbb{S}}_{\in \mathbb{R}^{N_{s} \times N_{e}, N_{t} \times p^{\star}}} \times \underbrace{\mathbb{W}^{T}}_{\in \mathbb{R}^{N_{t} \times p^{\star}, N_{t} \times p^{\star}}}.$ Here, $\mathbb{S}_{ii} = \sqrt{\sigma_{i}}$ for $1 \leq i \leq \min(N_{s} \times N_{e}, N_{t} \times p^{\star})$ and σ_{i} are the eigenvalues of \mathbb{MM}^{T} .

Introduction Model problem and discretization of this POD reduced model of the service preserving POD reduced

The offline stage

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow$$
 a solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$

The offline stage:

We compute snapshots of solution Uⁿ_µ ∈ ℝ^{N_s×N_e for µ ∈ P^{off} ⊂ P (a certain number of so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix}

$$\mathbb{M} = \begin{bmatrix} \mathbb{M}_{\mu_1} & \mathbb{M}_{\mu_2} & \cdots & \mathbb{M}_{\mu_{p^*}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}$$

$$\textbf{2} \ \ \textbf{SVD decomposition}: \mathbb{M} = \underbrace{\mathbb{V}}_{\in \mathbb{R}^{N_{s} \times N_{e}, N_{s} \times N_{e}}} \times \underbrace{\mathbb{S}}_{\in \mathbb{R}^{N_{s} \times N_{e}, N_{t} \times p^{\star}}} \times \underbrace{\mathbb{W}^{T}}_{\in \mathbb{R}^{N_{t} \times p^{\star}, N_{t} \times p^{\star}}}.$$

Here, $\mathbb{S}_{ii} = \sqrt{\sigma_i}$ for $1 \le i \le \min(N_s \times N_e, N_t \times p^*)$ and σ_i are the eigenvalues of \mathbb{MM}^T .

Select *r* columns from the matrice \mathbb{V} as follows : $\sum_{k \ge r+1} \sigma_k^2 \le \varepsilon$ for $\varepsilon \ge 0$ a fixed tolerance. \Rightarrow We obtain a reduced basis $\mathbb{V}^r = (\mathbf{V}_1, \cdots, \mathbf{V}_r)$.

The online stage

For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, the solution of the reduced model denoted by $\widetilde{U}_{\mu}^n \in \mathbb{R}^{N_s \times N_e}$ is expressed in the basis (V^1, \cdots, V^r) as

$$\widetilde{\boldsymbol{U}}_{\mu}^{n} := \sum_{k=1}^{r} \boldsymbol{c}_{\mu}^{k,n} \boldsymbol{V}^{k}, \quad \widetilde{\boldsymbol{U}}_{\mu}^{0} := \boldsymbol{\Pi}_{\operatorname{span}(\boldsymbol{V}^{1},\cdots,\boldsymbol{V}^{r})} \boldsymbol{U}^{0}.$$

How to derive the expression of the coefficients $c_{\mu}^{k,n}$?

We define the function $H : \mathbb{R}^r \to \mathbb{R}^r$ by $H_l(\boldsymbol{c}_{\mu}^n) := \langle \boldsymbol{V}^l, G^n(\widetilde{\boldsymbol{U}}_{\mu}^n) \rangle \quad \forall 1 \leq l \leq r$. The vector $\boldsymbol{c}_{\mu}^n \in \mathbb{R}^r$ is solution to the nonlinear problem

$$H(\mathbf{c}_{\mu}^{n})=0.$$

Remark

This reduced model does not necessarily preserves the structural properties of the numerical solution.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion

Outline

Introduction

- 2 Model problem and discretization
- 3 A first POD reduced model
- A structure preserving POD reduced model
 - 5 Numerical experiments
 - 6) Conclusion

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
			0000		

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
			0000		

Compute snapshots of solutions.

- Compute snapshots of solutions.
- 2 Compute the matrix $\overline{\mathbb{M}} \in \mathbb{R}^{N_{s} \times N_{e}, N_{t} \times p^{\star}}$ defined by

$$\overline{\mathbb{M}} = \begin{bmatrix} \overline{\mathbb{M}}_{\mu_1} & \overline{\mathbb{M}}_{\mu_2} & \cdots & \overline{\mathbb{M}}_{\mu_{p^\star}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^\star}.$$

where each matrix
$$\overline{\mathbb{M}}_{\mu_{\alpha}} \in \mathbb{R}^{N_s \times N_e, N_t}$$
 are defined by $[\overline{\mathbb{M}}_{\mu_{\alpha}}]_{i,K} = z_{\mu_{\alpha},i,K}^n = \ln(u_{\mu_{\alpha},i,K}^n)$.

- Compute snapshots of solutions.
- 2 Compute the matrix $\overline{\mathbb{M}} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}$ defined by

$$\overline{\mathbb{M}} = \begin{bmatrix} \overline{\mathbb{M}}_{\mu_1} & \overline{\mathbb{M}}_{\mu_2} & \cdots & \overline{\mathbb{M}}_{\mu_{p^\star}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^\star}$$

where each matrix $\overline{\mathbb{M}}_{\mu\alpha} \in \mathbb{R}^{N_s \times N_e, N_t}$ are defined by $[\overline{\mathbb{M}}_{\mu\alpha}]_{i,K} = z_{\mu\alpha,i,K}^n = \ln(u_{\mu\alpha,i,K}^n)$. SVD decomposition

$$\overline{\mathbb{M}} = \underbrace{\overline{\mathbb{V}}}_{\in \mathbb{R}^{N_{S} \times N_{\theta}, N_{S} \times N_{\theta}}} \times \underbrace{\overline{\mathbb{S}}}_{\in \mathbb{R}^{N_{S} \times N_{\theta}, N_{t} \times p^{\star}}} \times \underbrace{\overline{\mathbb{W}}^{T}}_{\in \mathbb{R}^{N_{t} \times p^{\star}, N_{t} \times p^{\star}}}$$

- Compute snapshots of solutions.
- 2 Compute the matrix $\overline{\mathbb{M}} \in \mathbb{R}^{N_{s} \times N_{e}, N_{t} \times p^{\star}}$ defined by

$$\overline{\mathbb{M}} = \begin{bmatrix} \overline{\mathbb{M}}_{\mu_1} & \overline{\mathbb{M}}_{\mu_2} & \cdots & \overline{\mathbb{M}}_{\mu_{p^\star}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_\theta, N_t \times p^\star}$$

where each matrix $\overline{\mathbb{M}}_{\mu_{\alpha}} \in \mathbb{R}^{N_{s} \times N_{e}, N_{t}}$ are defined by $[\overline{\mathbb{M}}_{\mu_{\alpha}}]_{i,K} = z_{\mu_{\alpha},i,K}^{n} = \ln(u_{\mu_{\alpha},i,K}^{n})$. SVD decomposition

$$\overline{\mathbb{M}} = \underbrace{\overline{\mathbb{V}}}_{\in \mathbb{R}^{N_{S} \times N_{\theta}, N_{S} \times N_{\theta}}} \times \underbrace{\overline{\mathbb{S}}}_{\in \mathbb{R}^{N_{S} \times N_{\theta}, N_{t} \times p^{\star}}} \times \underbrace{\overline{\mathbb{W}}^{T}}_{\in \mathbb{R}^{N_{t} \times p^{\star}, N_{t} \times p^{\star}}}$$

③ Select *r* basis functions. Add to the matrix $\overline{\mathbb{V}}^r N_s$ identity bloc matrices as follows

Model problem and discretization A first POD reduced model

 $\overline{\mathbb{V}}^{r}$

A structure preserving POD reduced model 00000

Numerical experiments

Example: $N_s = 3$

$$\mathbf{\hat{r}} = \begin{bmatrix} \overline{v}_{1,K1}^{1} & \overline{v}_{1,K1}^{2} & \cdots & \overline{v}_{1,K1}^{r} & 1 & 0 & 0 \\ \overline{v}_{1,K2}^{1} & \overline{v}_{1,K2}^{2} & \cdots & \overline{v}_{1,K2}^{r} & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{v}_{1,K_{N_{\theta}}}^{1} & \overline{v}_{2,K1}^{2} & \cdots & \overline{v}_{1,K_{N_{\theta}}}^{r} & 1 & 0 & 0 \\ \overline{v}_{2,K1}^{1} & \overline{v}_{2,K1}^{2} & \cdots & \overline{v}_{2,K1}^{r} & 0 & 1 & 0 \\ \overline{v}_{2,K2}^{1} & \overline{v}_{2,K2}^{2} & \cdots & \overline{v}_{2,K2}^{r} & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{v}_{2,K_{N_{\theta}}}^{1} & \overline{v}_{2,K_{N_{\theta}}}^{2} & \cdots & \overline{v}_{2,K_{N_{\theta}}}^{r} & 0 & 1 & 0 \\ \overline{v}_{3,K1}^{1} & \overline{v}_{3,K1}^{2} & \cdots & \overline{v}_{3,K1}^{r} & 0 & 0 & 1 \\ \overline{v}_{3,K2}^{1} & \overline{v}_{3,K2}^{2} & \cdots & \overline{v}_{3,K2}^{r} & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{v}_{3,K_{N_{\theta}}}^{1} & \overline{v}_{3,K_{N_{\theta}}}^{2} & \cdots & \overline{v}_{3,K_{N_{\theta}}}^{r} & 0 & 0 & 1 \end{bmatrix}$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
			00000		

The matrix $\overline{\mathbb{V}}^{r^*}$ is not orthogonal. We employ a QR factorization on the matrix $\overline{\mathbb{V}}^{r^*}$ so that $\overline{\mathbb{V}}^{r^*} = \mathbb{Q} \times \widetilde{\mathbb{R}}$ where $\mathbb{Q} \in \mathbb{R}^{N_s \times N_e, r^*}$ is orthogonal, and $\widetilde{\mathbb{R}} \in \mathbb{R}^{r^*, r^*}$ is upper triangular.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
			00000		

The matrix $\overline{\mathbb{V}}^{r^*}$ is not orthogonal. We employ a QR factorization on the matrix $\overline{\mathbb{V}}^{r^*}$ so that $\overline{\mathbb{V}}^{r^*} = \mathbb{Q} \times \widetilde{\mathbb{R}}$ where $\mathbb{Q} \in \mathbb{R}^{N_s \times N_e, r^*}$ is orthogonal, and $\widetilde{\mathbb{R}} \in \mathbb{R}^{r^*, r^*}$ is upper triangular.

For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, we define a "temporary reduced solution" denoted by $\overline{Z}_{\mu}^n \in \mathbb{R}^{N_s \times N_{\theta}}$. It is expressed in the basis $(\mathbf{Q}^1, \cdots, \mathbf{Q}^{r^*})$ as

$$\overline{\boldsymbol{Z}}_{\boldsymbol{\mu}}^{n} := \sum_{k=1}^{r^{\star}} \overline{c}_{\boldsymbol{\mu}}^{k,n} \boldsymbol{Q}^{k} \quad \text{and} \quad \overline{\boldsymbol{Z}}_{\boldsymbol{\mu}}^{0} := \boldsymbol{\Pi}_{\operatorname{Span}(\boldsymbol{Q}^{1}, \cdots, \boldsymbol{Q}^{r^{\star}})} \boldsymbol{Z}_{\boldsymbol{\mu}}^{0} \quad \text{where} \quad \boldsymbol{z}_{\boldsymbol{\mu}, i, \mathcal{K}}^{0} := \ln(\boldsymbol{u}_{\boldsymbol{\mu}, i, \mathcal{K}}^{0}).$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
			00000		

The matrix $\overline{\mathbb{V}}^{r^*}$ is not orthogonal. We employ a QR factorization on the matrix $\overline{\mathbb{V}}^{r^*}$ so that $\overline{\mathbb{V}}^{r^*} = \mathbb{Q} \times \widetilde{\mathbb{R}}$ where $\mathbb{Q} \in \mathbb{R}^{N_s \times N_e, r^*}$ is orthogonal, and $\widetilde{\mathbb{R}} \in \mathbb{R}^{r^*, r^*}$ is upper triangular.

For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, we define a "temporary reduced solution" denoted by $\overline{Z}_{\mu}^n \in \mathbb{R}^{N_s \times N_e}$. It is expressed in the basis $(\mathbf{Q}^1, \cdots, \mathbf{Q}^{r^*})$ as

$$\overline{\boldsymbol{Z}}_{\mu}^{n} := \sum_{k=1}^{r^{\star}} \overline{c}_{\mu}^{k,n} \boldsymbol{Q}^{k} \quad \text{and} \quad \overline{\boldsymbol{Z}}_{\mu}^{0} := \boldsymbol{\Pi}_{\operatorname{Span}(\boldsymbol{Q}^{1}, \cdots, \boldsymbol{Q}^{r^{\star}})} \boldsymbol{Z}_{\mu}^{0} \quad \text{where} \quad \boldsymbol{z}_{\mu,i,K}^{0} := \ln(\boldsymbol{u}_{\mu,i,K}^{0}).$$

Definition of the coefficient $\overline{c}_{\mu}^{k,n}$

Solve the nonlinear problem $\overline{H}_{l}(\overline{c}_{\mu}^{n}) = 0$ with $\overline{H}_{l}(\overline{c}_{\mu}^{n}) := \left\langle \mathbf{Q}^{l}, \mathbf{G}^{n}(\overline{\mathbf{U}}_{\mu}^{n}) \right\rangle \quad \forall 1 \leq l \leq r^{\star}.$

How can we construct a structure preserving reduced model ?

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclus
			00000		

Safe reduced solution

$$\overline{\boldsymbol{U}}_{\mu}^{n} := (\overline{u}_{\mu,i,K}^{n})_{i \in [1,N_{s}], K \in \mathcal{T}_{h}} \quad \text{with} \quad \overline{u}_{\mu,i,K}^{n} := \exp(\overline{z}_{\mu,i,K}^{n}) / \sum_{j=1}^{N_{s}} \exp(\overline{z}_{\mu,j,K}^{n}).$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusi
			00000		

Safe reduced solution

$$\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^{n} := (\overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n})_{i \in [1,N_{s}], \boldsymbol{K} \in \mathcal{T}_{h}} \quad \text{with} \quad \overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n} := \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n}) / \sum_{j=1}^{N_{s}} \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},j,\boldsymbol{K}}^{n}).$$

Structural properties of the reduced solution

Safe reduced solution

$$\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^{n} := (\overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n})_{i \in [1,N_{s}], \boldsymbol{K} \in \mathcal{T}_{h}} \quad \text{with} \quad \overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n} := \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n}) / \sum_{j=1}^{N_{s}} \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},j,\boldsymbol{K}}^{n}).$$

. .

Structural properties of the reduced solution

• Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$

Safe reduced solution

$$\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^{n} := (\overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n})_{i \in [1,N_{s}], \boldsymbol{K} \in \mathcal{T}_{h}} \quad \text{with} \quad \overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n} := \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n}) / \sum_{j=1}^{N_{s}} \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},j,\boldsymbol{K}}^{n}).$$

Structural properties of the reduced solution

• Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$

2 Volume filling constraint: $\sum_{i=1}^{N_s} \overline{u}_{\mu,i,K}^n = 1 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [1, N_t].$

Safe reduced solution

$$\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^{n} := (\overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n})_{i \in [1,N_{s}], \boldsymbol{K} \in \mathcal{T}_{h}} \quad \text{with} \quad \overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n} := \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n}) / \sum_{j=1}^{N_{s}} \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},j,\boldsymbol{K}}^{n}).$$

Structural properties of the reduced solution

• Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$

2 Volume filling constraint: $\sum_{i=1}^{N_s} \overline{u}_{\mu,i,K}^n = 1 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [1, N_t].$

mass conservation

$$\sum_{K\in\mathcal{T}_h}|K|\overline{u}_{\mu,i,K}^n=\sum_{K\in\mathcal{T}_h}|K|\overline{u}_{\mu,i,K}^{n-1}=\int_{\Omega}\overline{u}_i^0(x)\,\mathrm{d}x\quad\forall i\in[1,N_s]\quad\forall n\in[1,N_t]\,.$$

Safe reduced solution

$$\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^{n} := (\overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n})_{i \in [1,N_{s}], \boldsymbol{K} \in \mathcal{T}_{h}} \quad \text{with} \quad \overline{\boldsymbol{u}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n} := \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},i,\boldsymbol{K}}^{n}) / \sum_{j=1}^{N_{s}} \exp(\overline{\boldsymbol{z}}_{\boldsymbol{\mu},j,\boldsymbol{K}}^{n}).$$

Structural properties of the reduced solution

- **1** Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$
- **2** Volume filling constraint: $\sum_{i=1}^{N_s} \overline{u}_{\mu,i,K}^n = 1 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [1, N_t].$

mass conservation

$$\sum_{K\in\mathcal{T}_h}|K|\overline{u}_{\mu,i,K}^n=\sum_{K\in\mathcal{T}_h}|K|\overline{u}_{\mu,i,K}^{n-1}=\int_{\Omega}\overline{u}_i^0(x)\,\mathrm{dx}\quad\forall i\in[1,N_s]\quad\forall n\in[1,N_t]\,.$$

The discrete counterpart of the entropy decays along time

$$E_{\mathcal{T}_{h}}(\overline{\boldsymbol{U}}_{\mu}^{n}) - E_{\mathcal{T}_{h}}(\overline{\boldsymbol{U}}_{\mu}^{n-1}) + \Delta t_{n} \min_{i,j} a_{i,j} \sum_{\sigma \in \mathcal{E}_{h}^{\text{int}}} \sum_{i=1}^{N_{s}} \tau_{\sigma} \overline{\boldsymbol{u}}_{\mu,i\sigma}^{n} \left(D_{K\sigma}(\ln(\overline{\boldsymbol{u}}_{\mu,i}^{n})) \right)^{2} \leq 0 \quad \forall n \in [1, N_{t}].$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				•00000000000000000000000000000000000000	

Outline

Introduction

- 2 Model problem and discretization
- 3 A first POD reduced model
- A structure preserving POD reduced model
- 5 Numerical experiments
 - Conclusion

First test case

- We consider 3 species.
- Ω is a one dimensional domain consisting in a segment of length L = 1 m.
- $\Delta x = 10^{-2}$.
- Final simulation time T = 0.5 s and $\Delta t = 5 \times 10^{-4}$ s.
- Compute $\mu = 20$ snapshots of solutions.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				000000000000000000000000000000000000000	

Initial condition

discontinuous solution

Introduction Model problem and discretization A first POD reduced model A structure preserving POD reduced model Conclusion

Shape of the solution

$$\mathbb{A}_{oldsymbol{\mu}} := egin{pmatrix} 0 & 0.75 & 0.73 \ 0.75 & 0 & 0.84 \ 0.73 & 0.84 & 0 \end{pmatrix}$$

Typical behavior of a cross-diffusion system

Introduction Model problem and discretization A first POD reduced model ococo

Structural properties of the solution

Conclusion

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				000000000000000000000000000000000000000	

Introduction Model problem and discretization A first POD reduced model A structure preserving POD reduced model Numerical experiments Conclusion

Structural properties of the Solution

$$\mathbb{A}_{\mu_0} := \begin{pmatrix} 0 & 0.75 & 0.73 \\ 0.75 & 0 & 0.84 \\ 0.73 & 0.84 & 0 \end{pmatrix} \mathbb{A}_{\mu_9} = \begin{pmatrix} 0 & 0.93 & 0.71 \\ 0.93 & 0 & 0.44 \\ 0.71 & 0.44 & 0 \end{pmatrix} \quad \mathbb{A}_{\mu_{17}} = \begin{pmatrix} 0 & 0.37 & 0.004 \\ 0.37 & 0 & 0.72 \\ 0.004 & 0.72 & 0 \end{pmatrix}$$

First POD reduced model

r = 2

Violation of the structural properties of the solution

r = 1

r = 1

A structure preserving POD reduced model

Numerical experiments Conclusion

Second POD reduced model

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				000000000000000000000000000000000000000	

The entropy decreases with respect to time.

Second test case

- We consider the PVD process : 4 species.
- Ω is a one dimensional domain consisting in a segment of length L = 1 m.

• $\Delta x = 10^{-2}$.

- Final simulation time T = 0.5 s and $\Delta t = 2.5 \times 10^{-4}$ s.
- Compute $\mu = 20$ snapshots of solutions.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				000000000000000000000000000000000000000	

Initial condition

We take

$$w_1^0(x) = e^{-25(x-0.5)^2}, \quad w_2^0(x) = x^2 + \varepsilon, \quad w_3(x) = 1 - e^{-25(x-0.5)^2}, \quad w_4(x) = |\sin(\pi x)|$$

where $\varepsilon = 10^{-6}$.

To satisfy the volume filling constraint property we use a renormalization

$$u_i^{0}(x_j) = rac{w_i^{0}(x_j)}{\sum_{l=1}^{N_s} w_l^{0}(x_j)}$$

where x_j , $j \in [1, N_e]$ are the cell centers of the mesh.

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				000000000000000000000000000000000000000	

Fine solution

Cross-diffusion matrix

$$\mathbb{A}_{17} = \begin{pmatrix} 0 & 0.64 & 0.31 & 0.53 \\ 0.64 & 0 & 0.99 & 0.84 \\ 0.32 & 0.99 & 0 & 0.99 \\ 0.53 & 0.84 & 0.99 & 0 \end{pmatrix}$$

Properties of the solution

$$\mathcal{P}_{\overline{U}}(t_n) := \inf_{\mu \in \mathcal{P}^{\mathrm{off}}} \inf_{K \in \mathcal{T}_h} \overline{U}_{\mu,K}^n$$

$$\mathcal{S}_{\overline{U}}(t_n) := \inf_{\mu \in \mathcal{P}^{\mathrm{off}}} \inf_{K \in \mathcal{T}_h} \sum_{i=1}^{N_s} \overline{U}_{\mu,i,K}^n$$

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
				000000000000000000000000000000000000000	

First POD reduced model

Violation of the physical properties.

Safe POD reduced model

Introduction	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model	Numerical experiments	Conclusion
					••

Outline

Introduction

- 2 Model problem and discretization
- 3 A first POD reduced model
- 4 A structure preserving POD reduced model
- 5 Numerical experiments
- 6 Conclusion

Conclusion and perspectives

Conclusion

• We constructed an efficient reduced model preserving the physical properties of the cross-diffusion system.

Perspectives

- Construct a reduced basis method with a posteriori estimators for high accuracy.
- EIM algorithm to reduce the computational time.