Structure preserving reduced-order model for parametric cross-diffusion systems

JAD DABAGHI, VIRGINIE EHRLACHER

École Supérieure d'Ingénieurs Léonard de Vinci (DVRC) & École des Ponts ParisTech (CERMICS)

Séminaire interne Laboratoire de Mathématiques Jean-Leray 21st November 2023

Outline

- Introduction
- Model problem and discretization
- A first POD reduced model
- A structure preserving POD reduced model
- Numerical experiments
- 6 Conclusion

Motivation

Cross-diffusion systems arise in various application fields:

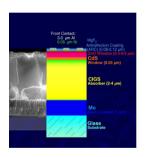
- N. Shigesada, K. Kawasaki, E. Teramoto (1979) population dynamics
- T. L. Jackson and H. M. Byrne (2002) growth of vascular tumors in medical biology
- A. Bakhta and V. Ehrlacher (2018) evolution of densities of chemical species composing a mixture

$$\partial_t u_i - \nabla \cdot (\sum_{j=0}^{N_s} G_{ij}(u_0, \cdots, u_{N_s}) \nabla u_j) = g_i(u_0, \cdots, u_n)$$
 in $\Omega \times [0, T]$
$$u(0, \cdot) = u^0$$
 in Ω
$$u_i(t, x) \ge 0, \quad \sum_{j=1}^{N_s} u_j(t, x) = 1$$
 in $\Omega \times [0, T]$

Particular example of cross-diffusion system

Numerical simulation of the PVD process for the fabrication of CIGS (Copper-Indium-Galium-Selenium) solar panels

- The chemical species are injected under gazeous form in a hot chamber.
- A cross-diffusion process occurs and the local volumic fraction of the species evolve with respect to time.
- goal: optimize the injected flux to obtain high performance solar cells.



The numerical simulation of the cross-diffusion system is highly expensive.

Need to construct robust schemes to reduce the computational time.

Outline

- Introduction
- Model problem and discretization
- A first POD reduced mode
- A structure preserving POD reduced model
- 5 Numerical experiments
- 6 Conclusion

Model Problem

$$\Omega\subset\mathbb{R}^2$$
 : polygonal domain, $T>0$: final simulation time, \textit{N}_s : number of chemical species.

Cross-diffusion model

$$\partial_t u_i - \nabla \cdot \left(\sum_{j=1}^{N_s} a_{i,j} \left(u_j \nabla u_i - u_i \nabla u_j \right) \right) = 0 \quad \text{in} \quad \Omega \times [0, T], \text{ for } i \in [1, N_s],$$

$$\left(\sum_{j=1}^{N_s} a_{i,j} \left(u_j \nabla u_i - u_i \nabla u_j \right) \right) \cdot \boldsymbol{n} = 0 \quad \text{on} \quad \partial\Omega \times [0, T], \text{ for } i \in [1, N_s],$$

$$u_i(\boldsymbol{x}, 0) = u_i^0(\boldsymbol{x}) \quad \text{in} \quad \Omega, \text{ for } i \in [1, N_s].$$

• Assume $\mathbb{A} \in \mathbb{R}^{N_s,N_s}$, $\mathbb{A} = (a_{i,j})_{1 \le i,j \le N_s}$ is symmetric with nonnegative coefficients and that its diagonal terms vanish.

Devise existence and uniqueness of solutions satisfying the constraints for *n* species with arbitrary cross-diffusion matrices is an open problem.

Devise existence and uniqueness of solutions satisfying the constraints for *n* species with arbitrary cross-diffusion matrices is an open problem.

Martin Burger, Marco Di Francesco, Jan-Frederik Pietschmann, and Bärbel Schlake (2010) First proof of existence of global weak solutions for 2 species and symmetric cross-diffusion matrices.

Devise existence and uniqueness of solutions satisfying the constraints for *n* species with arbitrary cross-diffusion matrices is an open problem.

- Martin Burger, Marco Di Francesco, Jan-Frederik Pietschmann, and Bärbel Schlake (2010) First proof of existence of global weak solutions for 2 species and symmetric cross-diffusion matrices.
- Nicola Zamponi and Ansgar Jüngel (2015) extension of these results to a general number of species n with nonzero diagonal coefficients and zero elsewhere

Devise existence and uniqueness of solutions satisfying the constraints for *n* species with arbitrary cross-diffusion matrices is an open problem.

- Martin Burger, Marco Di Francesco, Jan-Frederik Pietschmann, and Bärbel Schlake (2010) First proof of existence of global weak solutions for 2 species and symmetric cross-diffusion matrices.
- Nicola Zamponi and Ansgar Jüngel (2015) extension of these results to a general number of species n with nonzero diagonal coefficients and zero elsewhere
- Nicola Zamponi and Ansgar Jüngel (2015) the case n = 2 with arbitrary positive coefficients is covered though no uniqueness result is provided.

Devise existence and uniqueness of solutions satisfying the constraints for n species with arbitrary cross-diffusion matrices is an open problem.

- Martin Burger, Marco Di Francesco, Jan-Frederik Pietschmann, and Bärbel Schlake (2010) First proof of existence of global weak solutions for 2 species and symmetric cross-diffusion matrices
- Nicola Zamponi and Ansgar Jüngel (2015) extension of these results to a general number of species *n* with nonzero diagonal coefficients and zero elsewhere
- Nicola Zamponi and Ansgar Jüngel (2015) the case n=2 with arbitrary positive coefficients is covered though no uniqueness result is provided.
 - The analysis framework is based on the so-called boundedness by entropy method. The main idea is to write the system of equations as a formal gradient flow and derive estimates on the solutions using the decay of some entropy functional.

Gradient flow structure

Entropy functional:

$$E(\mathbf{u}) := \int_{\Omega} \sum_{i=1}^{N_s} u_i(x) \ln(u_i(x)) dx \quad \mathbf{u} = (u_i)_{i \in [\![1,N_s]\!]}$$

The cross-diffusion system has a gradient flow structure and can be rewritten as

$$\partial_t \mathbf{u} - \nabla \cdot (\mathbb{C}(\mathbf{u}) \nabla dE(\mathbf{u}))$$
$$(\mathbb{C}(\mathbf{u}) \nabla dE(\mathbf{u})) \cdot \mathbf{n} = 0$$
$$\mathbf{u}(\mathbf{x}, 0) = \mathbf{u}^0(\mathbf{x}) \quad \text{in} \quad \Omega.$$

- $\mathbb{C}(U) \in \mathbb{R}^{N_s,N_s}$: mobility matrix
- dE: Entropy differential defined by

$$(dE(\mathbf{u}))_i := \frac{\partial E(\mathbf{u})}{\partial u_i} = 1 + \ln(u_i).$$

There exists a weak solution u satisfying

$$\textbf{\textit{u}} \in \left[L^2_{loc}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))\right]^{N_s} \quad \text{and} \quad \partial_t \textbf{\textit{u}} \in \left[L^2_{loc}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})\right]')\right]^{N_s}.$$

There exists a weak solution u satisfying

$$oldsymbol{u} \in \left[L^2_{ ext{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))
ight]^{N_s} \quad ext{and} \quad \partial_t oldsymbol{u} \in \left[L^2_{ ext{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})
ight]')
ight]^{N_s}.$$

Structural properties of the solution: Consider $\mathbf{u}^0 = (u_1^0, \dots, u_{N_s}^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\mathbf{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then,

There exists a weak solution u satisfying

$$oldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))
ight]^{N_s} \quad ext{and} \quad \partial_t oldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})
ight]')
ight]^{N_s}.$$

Structural properties of the solution: Consider $\mathbf{u}^0 = (u_1^0, \dots, u_N^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\mathbf{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then,

• mass conservation:
$$\int_{\Omega} u_i(x,t) dx = \int_{\Omega} u_i^0(x) dx \quad \forall t \in [0,T], \ \forall i \in [1,N_s].$$

There exists a weak solution u satisfying

$$oldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))
ight]^{N_s} \quad ext{and} \quad \partial_t oldsymbol{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})
ight]')
ight]^{N_s}.$$

Structural properties of the solution: Consider $\mathbf{u}^0 = (u_1^0, \dots, u_N^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\mathbf{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then,

- mass conservation: $\int_{\Omega} u_i(x,t) dx = \int_{\Omega} u_i^0(x) dx \quad \forall t \in [0,T], \ \forall i \in [1,N_s].$
- 2 positivity: $u_i(x,t) > 0 \quad \forall x \in \Omega, \quad \forall t \in [0,T], \quad \forall i \in [1,N_s].$

There exists a weak solution u satisfying

$$\overset{\boldsymbol{u}}{\boldsymbol{u}} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))\right]^{N_s} \quad \text{and} \quad \partial_t \overset{\boldsymbol{u}}{\boldsymbol{u}} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})\right]')\right]^{N_s}.$$

Structural properties of the solution: Consider $\mathbf{u}^0 = (u_1^0, \dots, u_N^0) \in \mathbb{R}_+^{N_s}$ such that $\sum_{i=1}^{N_s} u_i^0 = 1$ and $\|\mathbf{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then,

- mass conservation: $\int_{\Omega} u_i(x,t) dx = \int_{\Omega} u_i^0(x) dx \quad \forall t \in [0,T], \ \forall i \in [1,N_s].$
- operativity: $u_i(x,t) \geq 0 \quad \forall x \in \Omega, \quad \forall t \in [0,T], \quad \forall i \in [1,N_s].$
- **3** preservation of the volume filling constraint: $\mathbf{u} \in \mathbb{R}^{N_s}_+$ such that $\sum_{i=1}^{N_s} u_i = 1$.

There exists a weak solution u satisfying

Structural properties of the solution: Consider $\mathbf{u}^0 = (u_1^0, \dots, u_N^0) \in \mathbb{R}_+^{N_s}$ such that

 $\mathbf{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, H^1(\Omega, \mathbb{R}^{N_s}))\right]^{N_s} \quad \text{and} \quad \partial_t \mathbf{u} \in \left[L^2_{\mathrm{loc}}(\mathbb{R}^+, \left[H^1(\Omega, \mathbb{R}^{N_s})\right]')\right]^{N_s}.$

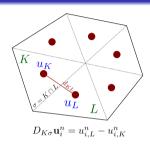
$$\sum_{i=1}^{N_s} u_i^0 = 1$$
 and $\|\mathbf{u}^0\|_{L^{\infty}(\Omega)} < +\infty$. Then,

- mass conservation: $\int_{\Omega} u_i(x,t) dx = \int_{\Omega} u_i^0(x) dx \quad \forall t \in [0,T], \ \forall i \in [1,N_s].$
- operativity: $u_i(x,t) \geq 0 \quad \forall x \in \Omega, \quad \forall t \in [0,T], \quad \forall i \in [1,N_s].$
- **3** preservation of the volume filling constraint: $\mathbf{u} \in \mathbb{R}_{+}^{N_s}$ such that $\sum_{i=1}^{N_s} u_i = 1$.

entropy-entropy dissipation relation

 $\frac{d}{dt}E(\boldsymbol{u}) + \int_{\Omega} \sum_{1 \leq i \leq N_s} a_{i,j} u_i(x) u_j(x) |\nabla \ln(u_i(x)) - \nabla \ln(u_j(x))|^2 dx = 0.$

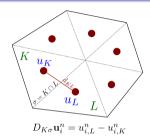
The cell-centered finite Volume method



- N_s unknowns per cell $m{U}^n := (u^n_{i.K})_{K \in \mathcal{T}_h, i \in \mathbb{I}^1, N_s \mathbb{I}} \in \mathbb{R}^{N_e \times N_s}$
- $\boldsymbol{U}^0 \in \mathbb{R}^{N_s \times N_e}$ where $u_{i,K}^0 = \frac{1}{|K|} \int_K u_i^0(x) \, \mathrm{d}x$
- FV scheme : find $\boldsymbol{U}^n \in \mathbb{R}^{N_e \times N_s}$ satisfying

$$|K|\frac{u_{i,K}^n-u_{i,K}^{n-1}}{\Delta t_n}+\sum_{\sigma\in\mathcal{E}_K}\mathcal{F}_{i,K\sigma}^n(\boldsymbol{U}^n)=0$$

The cell-centered finite Volume method



•
$$N_s$$
 unknowns per cell $m{U}^n := (u^n_{i,K})_{K \in \mathcal{T}_h, i \in [\![1,N_s]\!]} \in \mathbb{R}^{N_e imes N_s}$

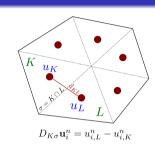
•
$$\boldsymbol{U}^0 \in \mathbb{R}^{N_s \times N_e}$$
 where $u_{i,K}^0 = \frac{1}{|K|} \int_K u_i^0(x) \, \mathrm{d}x$

ullet FV scheme : find $oldsymbol{U}^n \in \mathbb{R}^{N_{ extit{e}} imes N_{ extit{s}}}$ satisfying

$$|K|\frac{u_{i,K}^n-u_{i,K}^{n-1}}{\Delta t_n}+\sum_{\sigma\in\mathcal{E}_K}\mathcal{F}_{i,K\sigma}^n(\boldsymbol{U}^n)=0$$

Flux:
$$\mathcal{F}_{i,K\sigma}^{n}(\mathbf{U}^{n}) := -a^{\star}\tau_{\sigma}D_{K\sigma}\mathbf{u}_{i}^{n} - \tau_{\sigma}\left(\sum_{j=1}^{N}\left(a_{i,j} - a^{\star}\right)\left(u_{j,\sigma}^{n}D_{K\sigma}\mathbf{u}_{i}^{n} - u_{i,\sigma}^{n}D_{K\sigma}\mathbf{u}_{j}^{n}\right)\right).$$

The cell-centered finite Volume method



0000000000

- ullet N_s unknowns per cell $oldsymbol{U}^n:=(u^n_{i.K})_{K\in\mathcal{T}_h,i\in \llbracket 1,N_s
 rbracket}\in \mathbb{R}^{N_e imes N_s}$
- $\boldsymbol{U}^0 \in \mathbb{R}^{N_s \times N_e}$ where $u_{i,K}^0 = \frac{1}{|K|} \int_{\mathbb{R}^d} u_i^0(x) \, \mathrm{d}x$
- ullet FV scheme : find $oldsymbol{U}^n \in \mathbb{R}^{N_e imes N_s}$ satisfying

$$|K|\frac{u_{i,K}^n-u_{i,K}^{n-1}}{\Delta t_n}+\sum_{r,s}\mathcal{F}_{i,K\sigma}^n(\mathbf{U}^n)=0$$

Flux:
$$\mathcal{F}_{i,K\sigma}^{n}(\mathbf{U}^{n}) := -a^{\star}\tau_{\sigma}D_{K\sigma}\mathbf{u}_{i}^{n} - \tau_{\sigma}\left(\sum_{i=1}^{N}\left(a_{i,j} - a^{\star}\right)\left(u_{j,\sigma}^{n}D_{K\sigma}\mathbf{u}_{i}^{n} - u_{i,\sigma}^{n}D_{K\sigma}\mathbf{u}_{j}^{n}\right)\right).$$

$$\text{edge unknown } u_{i,\sigma}^n := \left\{ \begin{array}{ccc} 0 & \text{if} & \min(u_{i,K}^n, u_{i,K\sigma}^n) < 0, \\ u_{i,K}^n & \text{if} & u_{i,K}^n = u_{i,K\sigma}^n \geq 0, \\ \frac{u_{i,K}^n - u_{i,K\sigma}^n}{\ln(u_{i,K}^n) - \ln(u_{i,K\sigma}^n)} & \text{if} & u_{i,K}^n \neq u_{i,K\sigma}^n \geq 0. \end{array} \right.$$

Remark

- The numerical flux is conservative i.e. for $\sigma \in \mathcal{E}_h^{\text{int}}$, $\sigma = K|L, F_{i,l,\sigma}^n = -F_{i,K,\sigma}^n$.
- The main idea of the introduction of the parameter a* > 0 is to avoid unphysical solutions Cancès, Gaudeul 2020.

Example:

Consider 2 species and two elements K and L such that

$$u_K^0 = (0,1) \quad u_L^0 = (1,0).$$

Here.

$$u_{1,K|L}^0 = 0$$
 $u_{2,K|L}^0 = 0$

Then.

$$\mathcal{F}_{i,K\sigma}^{n}(\mathbf{U}^{n})=0 \Rightarrow station$$
nary solution

Structural properties of the FV solution

- mass conservation $\sum_{i} |K| u_{i,K}^n = \int_{\Omega} u_i^0(x) dx \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$
- **2** positivity $u_{i,K}^n > 0 \quad \forall K \in \mathcal{T}_h, \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$

Structural properties of the FV solution

- mass conservation $\sum_{i \in \mathcal{I}} |K| u_{i,K}^n = \int_{\Omega} u_i^0(x) dx \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$
- **2** positivity $u_{i,K}^n > 0 \quad \forall K \in \mathcal{T}_h, \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$
- **3** Volume filling constraints: $\sum_{i=1}^{N_s} u_{i,K}^n = 1 \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [0, N_t].$

Structural properties of the FV solution

- mass conservation $\sum_{i=1}^{n} |K| u_{i,K}^n = \int_{\Omega} u_i^0(x) dx \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$
- **2** positivity $u_{i,K}^n > 0 \quad \forall K \in \mathcal{T}_h, \quad \forall i \in [1, N_s], \quad \forall n \in [0, N_t].$
- **3** Volume filling constraints: $\sum_{i=1}^{N_s} u_{i,K}^n = 1 \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [0, N_t].$
- Decays of the discrete entropy $E_{\mathcal{T}_b}(\mathbf{U}^n) \leq E_{\mathcal{T}_b}(\mathbf{U}^{n-1}) \quad \forall n \in [1, N_t] \text{ where }$ $E_{\mathcal{T}_h}(\boldsymbol{U}) := \sum \sum_{i=1}^{N_s} |K| u_{i,K} \ln(u_{i,K}).$

Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

$$G^n(extbf{\emph{U}}^n) = 0$$
 where $G^n: \mathbb{R}^{N_e imes N_s} o \mathbb{R}^{N_e imes N_s}.$

Newton linearization

The finite volume procedure defines a nonlinear system of algebraic equations

$$G^n(oldsymbol{U}^n)=0$$
 where $G^n:\mathbb{R}^{N_e imes N_s} o \mathbb{R}^{N_e imes N_s}.$

Initialization of Newton solver: Let $n \in [1, N_t]$ and $\boldsymbol{U}^{n,0} \in \mathbb{R}^{N_e \times N_s}$ be fixed (typically $\boldsymbol{U}^{n,0} = \boldsymbol{U}^{n-1}$).

Linear system : the Newton algorithm generates a sequence $(\boldsymbol{U}^{n,k})_{k\geq 1}$, with $\boldsymbol{U}^{n,k}\in\mathbb{R}^{N_e\times N_s}$ solution of

$$\mathbb{A}^{n,k-1} U^{n,k} = B^{n,k-1}.$$

The finite volume procedure defines a nonlinear system of algebraic equations

$$G^n(\boldsymbol{U}^n) = 0$$
 where $G^n : \mathbb{R}^{N_e \times N_s} \to \mathbb{R}^{N_e \times N_s}$.

Initialization of Newton solver: Let $n \in [1, N_t]$ and $U^{n,0} \in \mathbb{R}^{N_e \times N_s}$ be fixed (typically $U^{n,0} = U^{n-1}$).

Linear system : the Newton algorithm generates a sequence $(\boldsymbol{U}^{n,k})_{k>1}$, with $\boldsymbol{U}^{n,k} \in \mathbb{R}^{N_e \times N_s}$ solution of

$$\mathbb{A}^{n,k-1}U^{n,k}=B^{n,k-1}$$

The jacobian matrix $\mathbb{A}^{n,k-1} \in \mathbb{R}^{N_e \times N_s, N_e \times N_s}$ and the right-hand side vector $\mathbf{B}^{n,k-1} \in \mathbb{R}^{N_e \times N_s}$ are defined by

$$\mathbb{A}^{n,k-1} := \mathbb{J}_{G^n}(\mathbf{U}^{n,k-1})$$
 and $\mathbf{B}^{n,k-1} := \mathbb{J}_{G^n}(\mathbf{U}^{n,k-1})\mathbf{U}^{n,k-1} - G^n(\mathbf{U}^{n,k-1})$

Summary

- We proposed the cell-centered finite volume method to solve the cross-diffusion system.
- This discrete system preserves the structural properties of the solution.

We want to solve the cross-diffusion problem for a wide variety of cross-diffusion matrices A. It involves high computational cost.

We construct a reduced model to save computational time that preserves the structural properties of the solution.

Outline

- Introduction
- Model problem and discretization
- A first POD reduced model
- A structure preserving POD reduced model
- Numerical experiments
- 6 Conclusion

The offline stage

The offline stage

Some notation: To each cross-diffusion matrix $\mathbb{A}=(a_{i,j})$ is associated a parameter $\mu\in\mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow \text{ a solution } \boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}.$$

The offline stage

Some notation: To each cross-diffusion matrix $\mathbb{A}=(a_{i,j})$ is associated a parameter $\mu\in\mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow \text{ a solution } \boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}.$$

The offline stage:

Some notation: To each cross-diffusion matrix $\mathbb{A}=(a_{i,j})$ is associated a parameter $\mu\in\mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow \text{ a solution } \boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}.$$

The offline stage:

• We compute snapshots of solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$ for $\mu \in \mathcal{P}^{\text{off}} \subset \mathcal{P}$ (a certain number of so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

$$\mathbb{M} = \begin{bmatrix} \mathbb{M}_{\mu_1} & \mathbb{M}_{\mu_2} & \cdots & \mathbb{M}_{\mu_{p^*}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}.$$

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow \text{ a solution } \boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}.$$

The offline stage:

• We compute snapshots of solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$ for $\mu \in \mathcal{P}^{\text{off}} \subset \mathcal{P}$ (a certain number of so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

$$\mathbb{M} = \begin{bmatrix} \mathbb{M}_{\mu_1} & \mathbb{M}_{\mu_2} & \cdots & \mathbb{M}_{\mu_{n^*}} \end{bmatrix} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}.$$

 $\text{ SVD decomposition : } \mathbb{M} = \underbrace{\mathbb{V}}_{\in \mathbb{R}^{N_S \times N_e, N_S \times N_e}} \times \underbrace{\mathbb{S}}_{\in \mathbb{R}^{N_S \times N_e, N_t \times \rho^\star}} \times \underbrace{\mathbb{W}^{T}}_{\in \mathbb{R}^{N_t \times \rho^\star, N_t \times \rho^\star}}.$

Here, $\mathbb{S}_{ii} = \sqrt{\sigma_i}$ for $1 \leq i \leq \min(N_s \times N_e, N_t \times p^*)$ and σ_i are the eigenvalues of MM^T.

Some notation: To each cross-diffusion matrix $\mathbb{A} = (a_{i,j})$ is associated a parameter $\mu \in \mathcal{P}$.

$$\forall \mu \in \mathcal{P} \longleftrightarrow \text{ a solution } \boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}.$$

The offline stage:

• We compute snapshots of solution $\boldsymbol{U}_{\mu}^{n} \in \mathbb{R}^{N_{s} \times N_{e}}$ for $\mu \in \mathcal{P}^{\text{off}} \subset \mathcal{P}$ (a certain number of so-called high-fidelity trajectories). Next, compute the corresponding snapshots matrix

$$\mathbb{M} = [\mathbb{M}_{u_1} \quad \mathbb{M}_{u_2} \quad \cdots \quad \mathbb{M}_{u_{n+1}}] \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}.$$

- $\text{ SVD decomposition : } \mathbb{M} = \underbrace{\mathbb{V}}_{\in \mathbb{R}^{N_S \times N_e, N_S \times N_e}} \times \underbrace{\mathbb{S}}_{\in \mathbb{R}^{N_S \times N_e, N_t \times \rho^\star}} \times \underbrace{\mathbb{W}^{T}}_{\in \mathbb{R}^{N_t \times \rho^\star, N_t \times \rho^\star}}.$
 - Here, $\mathbb{S}_{ii} = \sqrt{\sigma_i}$ for $1 \leq i \leq \min(N_s \times N_e, N_t \times p^*)$ and σ_i are the eigenvalues of \mathbb{MM}^T .
- **3** Select r columns from the matrice \mathbb{V} as follows : $\sum_{k>r+1} \sigma_k^2 \leq \varepsilon$ for $\varepsilon \geq 0$ a fixed tolerance. \Rightarrow We obtain a reduced basis $\mathbb{V}^r = (V_1, \cdots, V_r)$.

• For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, the solution of the reduced model denoted by $\widetilde{\boldsymbol{U}}_{u}^{n} \in \mathbb{R}^{N_s \times N_e}$ is expressed in the basis $(\boldsymbol{V}^1, \cdots, \boldsymbol{V}^r)$ as

$$\widetilde{m{U}}_{\mu}^n := \sum_{k=1}^r c_{\mu}^{k,n} m{V}^k, \quad \widetilde{m{U}}_{\mu}^0 := m{U}^0.$$

For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, the solution of the reduced model denoted by $\widetilde{\boldsymbol{U}}_{\mu}^n \in \mathbb{R}^{N_s \times N_e}$ is expressed in the basis $(\boldsymbol{V}^1, \cdots, \boldsymbol{V}^r)$ as

$$\widetilde{m{U}}^n_{\mu} := \sum_{k=1}^r c^{k,n}_{\mu} m{V}^k, \quad \widetilde{m{U}}^0_{\mu} := m{U}^0.$$

How to derive the expression of the coefficients $c_{\mu}^{k,n}$?

• For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, the solution of the reduced model denoted by $\widetilde{\boldsymbol{U}}_{u}^{n} \in \mathbb{R}^{N_s \times N_e}$ is expressed in the basis $(\boldsymbol{V}^1, \cdots, \boldsymbol{V}^r)$ as

$$\widetilde{m{U}}^n_{\mu} := \sum_{k=1}^r c^{k,n}_{\mu} m{V}^k, \quad \widetilde{m{U}}^0_{\mu} := m{U}^0.$$

- **6** How to derive the expression of the coefficients $c_n^{k,n}$?
- We define the function $H: \mathbb{R}^r \to \mathbb{R}^r$ by $H_I(\boldsymbol{c}_{ii}^n) := \langle \boldsymbol{V}^I, G^n(\widetilde{\boldsymbol{U}}_{ii}^n) \rangle \quad \forall 1 \leq I \leq r$.

• For each $\mu \in \mathcal{P}$, at each time step $n = 1 \cdots N_t$, the solution of the reduced model denoted by $\widetilde{\boldsymbol{U}}_{u}^{n} \in \mathbb{R}^{N_s \times N_e}$ is expressed in the basis $(\boldsymbol{V}^1, \cdots, \boldsymbol{V}^r)$ as

$$\widetilde{\pmb{U}}^n_{\mu} := \sum_{k=1}^r \pmb{c}^{k,n}_{\mu} \pmb{V}^k, \quad \widetilde{\pmb{U}}^0_{\mu} := \pmb{U}^0.$$

- **6** How to derive the expression of the coefficients $c_n^{k,n}$?
- We define the function $H: \mathbb{R}^r \to \mathbb{R}^r$ by $H_I(\boldsymbol{c}_{ii}^n) := \langle \boldsymbol{V}^I, G^n(\widetilde{\boldsymbol{U}}_{ii}^n) \rangle \quad \forall 1 \leq I \leq r$.
- The vector $\mathbf{c}_{i}^{n} \in \mathbb{R}^{r}$ is solution to the nonlinear problem

$$H(\boldsymbol{c}_{\boldsymbol{\mu}}^n)=0.$$

This reduced model does not necessarily preserves the structural properties of the numerical solution.

We want to construct a reduced-order model preserving the structural properties of the solution

- Positivity of the solution
- mass conservation
- Volume filling constraint
- Decay of entropy

Outline

- Introduction
- Model problem and discretization
- A first POD reduced mode
- A structure preserving POD reduced model
- Numerical experiments
- 6 Conclusion

Compute snapshots of solutions.

- Compute snapshots of solutions.
- $\textbf{② Compute the matrix } \overline{\mathbb{M}} \in \mathbb{R}^{\textit{N}_{\textit{S}} \times \textit{N}_{\textit{e}},\textit{N}_{\textit{t}} \times \textit{p}^{\star}} \text{ defined by } \overline{\mathbb{M}} = \begin{bmatrix} \overline{\mathbb{M}}_{\mu_{1}} & \overline{\mathbb{M}}_{\mu_{2}} & \cdots & \overline{\mathbb{M}}_{\mu_{p^{\star}}} \end{bmatrix} \text{ where }$

$$\left[\overline{\mathbb{M}}_{\underline{\mu_{\alpha}}}\right]_{i,K} = z_{\underline{\mu_{\alpha}},i,K}^{n} = \ln(u_{\underline{\mu_{\alpha}},i,K}^{n}) - \ln(u_{\underline{\mu_{\alpha}},N_{s},K}^{n}) \quad \forall i \in \llbracket 1,N_{s}-1 \rrbracket \quad \forall K \in \mathcal{T}_{h}$$

- Compute snapshots of solutions.
- Compute the matrix $\overline{\mathbb{M}} \in \mathbb{R}^{N_s \times N_e, N_t \times p^*}$ defined by $\overline{\mathbb{M}} = [\overline{\mathbb{M}}_{\mu_1} \ \overline{\mathbb{M}}_{\mu_2} \ \cdots \ \overline{\mathbb{M}}_{\mu_{n^*}}]$ where

$$\left[\overline{\mathbb{M}}_{\underline{\mu_{\alpha}}}\right]_{i,K} = z^n_{\underline{\mu_{\alpha}},i,K} = \ln(u^n_{\underline{\mu_{\alpha}},i,K}) - \ln(u^n_{\underline{\mu_{\alpha}},N_{s},K}) \quad \forall i \in \llbracket 1,N_{s}-1 \rrbracket \quad \forall K \in \mathcal{T}_h$$

3 We then denote by $V^1, \dots, V^r \in \mathbb{R}^{N_h \times (N_s - 1)}$ the r first POD modes of the family $(\mathbf{Z}_{\mu}^{n})_{\mu \in \mathcal{D}^{\text{off}}} \underset{1 \leq n \leq N_{s}}{1}$. In addition, for all $1 \leq i \leq N_{s} - 1$, we define

$$V^{r+i} := I^i$$

where $\mathbf{I}^i \in \mathbb{R}^{(N_s-1)\times N_h}$ is defined by

$$m{I}^{j} := (m{I}^{j}_{j,K})_{K \in \mathcal{T}, 1 \leq j \leq N_{s}-1} \quad ext{with} \quad m{I}^{j}_{j,K} = \delta^{i}_{j}$$

Denote by $r^* := r + N_s - 1$.

Example: $N_s = 3$

$$\overline{\mathbb{V}}^{r^{\star}} = \begin{bmatrix} \overline{v}_{1,K1}^{1} & \overline{v}_{1,K1}^{2} & \cdots & \overline{v}_{1,K1}^{r} & 1 & 0 \\ \overline{v}_{1,K2}^{1} & \overline{v}_{1,K2}^{2} & \cdots & \overline{v}_{1,K2}^{r} & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{v}_{1,K_{N_{e}}}^{1} & \overline{v}_{1,K_{N_{e}}}^{2} & \cdots & \overline{v}_{1,K_{N_{e}}}^{r} & 1 & 0 \\ \overline{v}_{2,K1}^{1} & \overline{v}_{2,K1}^{2} & \cdots & \overline{v}_{2,K1}^{r} & 0 & 1 \\ \overline{v}_{2,K2}^{1} & \overline{v}_{2,K2}^{2} & \cdots & \overline{v}_{2,K2}^{r} & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{v}_{2,K_{N_{e}}}^{1} & \overline{v}_{2,K_{N_{e}}}^{2} & \cdots & \overline{v}_{2,K_{N_{e}}}^{r} & 0 & 1 \end{bmatrix}$$

Introduction 000	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model ○○○●○○	Numerical experiments	Conclu:

The SP-ROM method construct a ROM approximation \overline{Z}_{n}^{n} of Z_{n}^{n} that reads

$$\overline{m{Z}}_{\mu}^n := \sum_{k=1}^{r^\star} c_{\mu}^{k,n} m{V}^k \qquad ext{where} \quad m{c}_{\mu}^n := \left(c_{\mu}^{k,n}
ight)_{1 \leq k \leq r^\star} \in \mathbb{R}^{r^\star}$$

Here, the vector \mathbf{c}_{u}^{n} is solution to the nonlinear system

$$\overline{H}_{\mu}^{n,l}(\boldsymbol{c}) := \left\langle \boldsymbol{W}^{l}, \overline{G}_{\mu}^{n}(\boldsymbol{c}) \right\rangle = 0 \quad \forall 1 \leq l \leq r^{\star}$$

Introduction 000	Model problem and discretization	A first POD reduced model	A structure preserving POD reduced model ○○○○●○	Numerical experiments	Conclu:

Solution Assuming that \overline{Z}_{μ}^{n} is computed, a structure preserving ROM approximation $\overline{\boldsymbol{U}}_{\mu}^{n}=\left(\overline{u}_{\mu,i,K}^{n}\right)_{K\in\mathcal{T}}$ of \boldsymbol{U}_{μ}^{n} is then computed as follows:

$$egin{aligned} \overline{u}_{\mu,i,K}^n &:= rac{e^{\overline{z}_{\mu,i,K}^n}}{1 + \sum_{j=1}^{N_s-1} e^{\overline{z}_{\mu,j,K}^n}} & orall K \in \mathcal{T}_h & orall 1 \leq i \leq N_s-1 \ \overline{u}_{\mu,N_s,K}^n &= rac{1}{1 + \sum_{j=1}^{N_s-1} e^{\overline{z}_{\mu,j,K}^n}} & orall K \in \mathcal{T}_h \end{aligned}$$

- **1** Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$
- Volume filling constraint: $\sum_{i=1}^{N_s} \overline{u}_{\mu,i,K}^n = 1 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [1, N_t].$

- O Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$
- Volume filling constraint: $\sum_{i=1}^{N_s} \overline{u}_{\mu,i,K}^n = 1 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [1, N_t].$
- mass conservation

$$\sum_{K\in\mathcal{T}_h} |K| \overline{u}^n_{\mu,i,K} = \sum_{K\in\mathcal{T}_h} |K| \overline{u}^{n-1}_{\mu,i,K} = \int_{\Omega} \overline{u}^0_i(x) \, \mathrm{d}x \quad \forall i \in [1,N_s] \quad \forall n \in [1,N_t] \, .$$

- **1** Positivity $\overline{u}_{\mu,i,K}^n > 0 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h \quad \forall i \in [1, N_s] \quad \forall n \in [0, N_t].$
- Volume filling constraint: $\sum_{i=1}^{N_s} \overline{u}_{\mu,i,K}^n = 1 \quad \forall \mu \in \mathcal{P} \quad \forall K \in \mathcal{T}_h, \quad \forall n \in [1, N_t].$
- mass conservation

$$\sum_{K\in\mathcal{T}_h} |K| \overline{u}^n_{\mu,i,K} = \sum_{K\in\mathcal{T}_h} |K| \overline{u}^{n-1}_{\mu,i,K} = \int_{\Omega} \overline{u}^0_i(x) \, \mathrm{d}x \quad \forall i \in [1,N_s] \quad \forall n \in [1,N_t] \, .$$

The discrete counterpart of the entropy decays along time

$$E_{\mathcal{T}_h}(\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^n) - E_{\mathcal{T}_h}(\overline{\boldsymbol{U}}_{\boldsymbol{\mu}}^{n-1}) + \Delta t_n \min_{i,j} a_{i,j} \sum_{\sigma \in \mathcal{E}_h^{int}} \sum_{i=1}^{N_s} \tau_{\sigma} \overline{\boldsymbol{u}}_{\boldsymbol{\mu},i\sigma}^n \left(D_{K\sigma}(\ln(\overline{\boldsymbol{u}}_{\boldsymbol{\mu},i}^n)) \right)^2 \leq 0 \quad \forall n \in [1,N_t].$$

Outline

- Introduction
- Model problem and discretization
- A first POD reduced model
- A structure preserving POD reduced model
- Numerical experiments
- 6 Conclusion

First test case

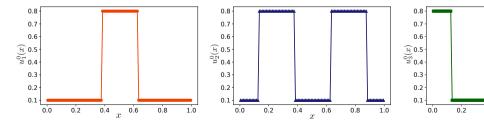
- number of species : $N_s = 3$
- Ω : 1D domain
- number of cells: 70
- $\Delta t = \Delta t_0 := 1.6 \times 10^{-4}$ and the final simulation time is T := 0.5.
- Compute $\mu = 20$ snapshots of solutions.

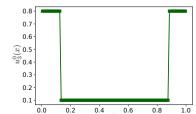
Initial condition

$$u_1^0(x) := \left\{ \begin{array}{ll} 1 - 2\delta & \text{if } x \in \left[\frac{3}{8}, \frac{5}{8}\right] \\ \delta & \text{else,} \end{array} \right. \quad u_2^0(x) := \left\{ \begin{array}{ll} 1 - 2\delta & \text{if } x \in \left[\frac{1}{8}, \frac{3}{8}\right] \cap \left[\frac{5}{8}, \frac{7}{8}\right] \\ \delta & \text{else} \end{array} \right.$$

and

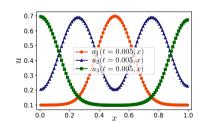
$$u_3^0(x) := \left\{ \begin{array}{ll} 1 - 2\delta & \text{if } x \in \left[0, \frac{1}{8}\right] \cap \left[\frac{7}{8}, 1\right] \\ \delta & \text{else.} \end{array} \right.$$

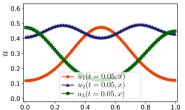


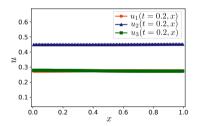


The high-fidelity problem

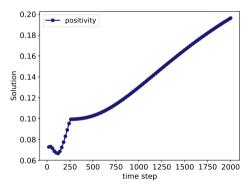
$$\mathbb{A}_{\mu} := \begin{pmatrix} 0 & 0.75 & 0.73 \\ 0.75 & 0 & 0.84 \\ 0.73 & 0.84 & 0 \end{pmatrix}$$

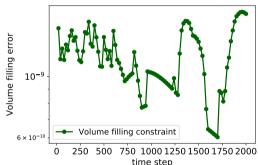






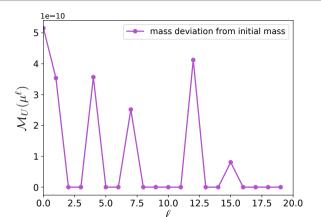
Typical behavior of a cross-diffusion system





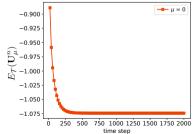
$$\mathcal{P}_U(t_n) := \inf_{\mu \in \mathcal{P}^{\mathrm{off}}} \inf_{K \in \mathcal{T}_h} U^n_{\mu,K}$$

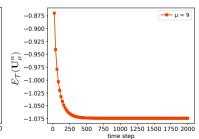
$$\mathcal{S}_U(t_n) := \left| 1 - \inf_{\substack{\mu \in \mathcal{P}^{ ext{off}} \ K \in \mathcal{T}_h}} \inf_{\substack{i=1 \ i = 1}} \sum_{j=1}^{N_s} U_{\mu,i,K}^n
ight|$$

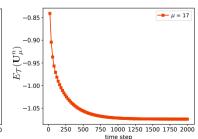


$$\mathcal{M}_U(\mu) := \max_{i \in \llbracket 1, N_s
rbracket} \max_{n \in \llbracket 1, N_t
rbracket} \left| \sum_{K \in \mathcal{T}_h} |K| U_{\mu,i,K}^n - \int_{\Omega} u_i^{\ 0}(x) \,\mathrm{d}x
ight|$$

$$\mathbb{A}_{\mu_0} := \begin{pmatrix} 0 & 0.75 & 0.73 \\ 0.75 & 0 & 0.84 \\ 0.73 & 0.84 & 0 \end{pmatrix} \mathbb{A}_{\mu_9} = \begin{pmatrix} 0 & 0.93 & 0.71 \\ 0.93 & 0 & 0.44 \\ 0.71 & 0.44 & 0 \end{pmatrix} \quad \mathbb{A}_{\mu_{17}} = \begin{pmatrix} 0 & 0.37 & 0.004 \\ 0.37 & 0 & 0.72 \\ 0.004 & 0.72 & 0 \end{pmatrix}$$

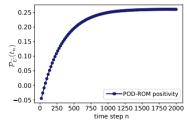


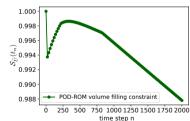


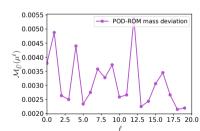


POD reduced model

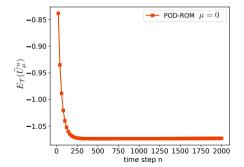
Violation of the structural properties of the solution

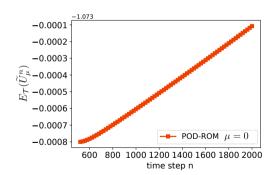






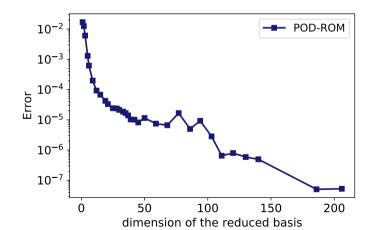
$$\mathbb{A}_0 = \begin{pmatrix} 0 & 0.93 & 0.71 \\ 0.93 & 0 & 0.44 \\ 0.71 & 0.44 & 0 \end{pmatrix}$$





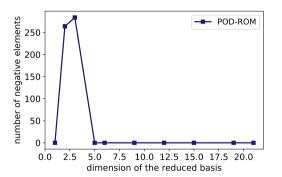
Violation of the decay of entropy

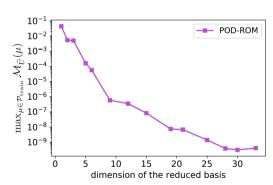
$$\max_{i \in \llbracket 1, \mathcal{N}_{\mathbf{S}} \rrbracket} \left\| u_{\mu}^i - \widetilde{u}_{\mu}^i \right\|_{L^{\infty}(\mathcal{P}^{\mathrm{off}}, L^2(\Omega), L^2([0, T]))} := \max_{i \in \llbracket 1, \mathcal{N}_{\mathbf{S}} \rrbracket} \max_{\mu \in \mathcal{P}^{\mathrm{off}}} \left(\int_0^T \left\| u_{\mu}^i - \widetilde{u}_{\mu}^i \right\|_{L^2(\Omega)}^2(t) \, \mathrm{d}t \right)^{\frac{1}{2}}$$



POD-ROM error \rightarrow 0.

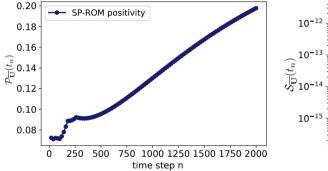
Complements

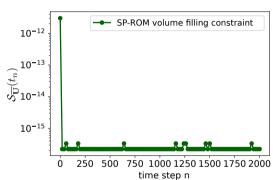




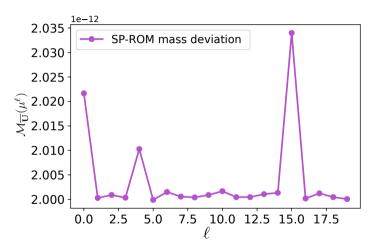
A surprising result occurs for r = 1...

SP-ROM



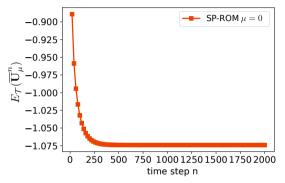


- The solution is always positive
- The volume-filling constraint is satisfied

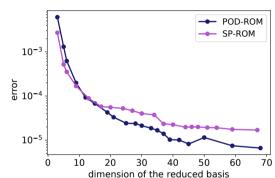


The mass conservation property is satisfied

Introduction



Introduction



- The entropy decreases with respect to time.
- The POD-ROM and SP-ROM error decrease with respect to the dimension of the reduced basis.

Second test case: PVD process

- 4 species are injected under gaseous form in a hot chamber: copper, indium, gallium and selenium.
- Ω is a one dimensional domain consisting in a segment of length L=1m.
- Final simulation time T = 0.5 s and $\Delta t = 2.5 \times 10^{-4}$ s.
- Compute $\mu = 20$ snapshots of solutions.

Initial condition

$$w_1^0(x) := e^{-25(x-0.5)^2}, \quad w_2^0(x) := x^2 + \varepsilon, \quad w_3^0(x) := 1 - e^{-25(x-0.5)^2}, \quad w_4^0(x) := |\sin(\pi x)|$$

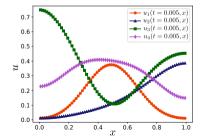
where $\varepsilon = 10^{-6}$, and employ a normalization

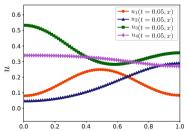
$$u_i^0(x) = \frac{w_i^0(x)}{\sum_{i=1}^{N_s} w_i^0(x)} \quad \forall i \in \llbracket 1, 4 \rrbracket$$

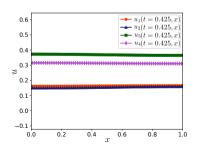
High-fidelity resolution

Cross-diffusion matrix

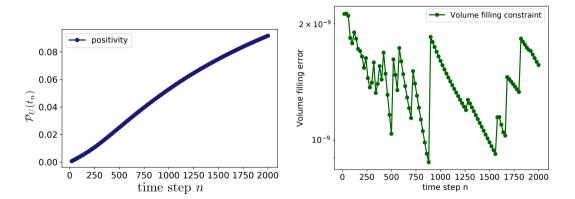
$$\mathbb{A}_{17} = \begin{pmatrix} 0 & 0.64 & 0.31 & 0.53 \\ 0.64 & 0 & 0.99 & 0.84 \\ 0.32 & 0.99 & 0 & 0.99 \\ 0.53 & 0.84 & 0.99 & 0 \end{pmatrix}$$



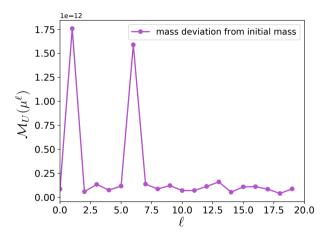




Properties of the solution

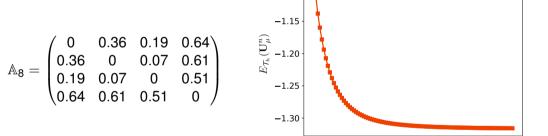


- The solution is always positive
- The volume filling property is satisfied.



The mass conservation property is satisfied

-1.10



250 500

The entropy decreases with respect to time

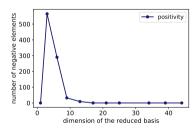
 $\mu = 8$

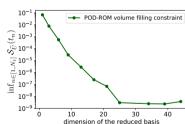
750 1000 1250 1500 1750 2000

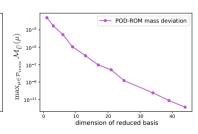
time step n

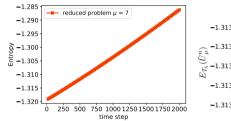
POD-ROM

Violation of the physicial properties of the solution

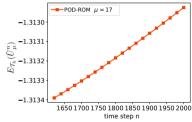


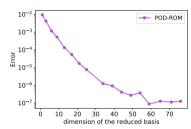






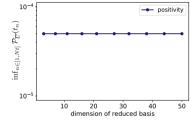
Introduction

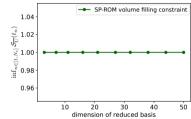


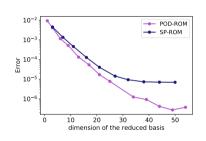


- The entropy increases with respect to time
- The POD-ROM error decreases with respect to the dimension of the reduced basis

SP-ROM





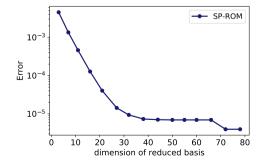


Left Figure : $\inf_{n \in [\![1,N_s]\!]} \inf_{\mu \in \mathcal{P}^{\mathrm{off}}} \inf_{K \in \mathcal{T}} \inf_{i \in [\![1,N_s]\!]} \overline{u}^n_{\mu,i,K}$

 $\text{Middle figure}: \inf_{n \in [\![1,N_t]\!]} \inf_{\mu \in \mathcal{P}^{\text{off}}} \inf_{K \in \mathcal{T}} \inf_{i \in [\![1,N_s]\!]} \overline{u}^n_{\mu,i,K}$

Validation stage

- We check the validity of the various reduced-order models for cross-diffusion coefficients which do not belong to the training set P^{off}.
- We select values of parameters μ in a subset $\mathcal{P}_{\text{valid}}$ of \mathcal{P} , which is different from \mathcal{P}^{off}
- Compare the error between the high-fidelity model and the ROMs. Here, $\operatorname{Card}(\mathcal{P}_{valid}) = 20$



Outline

- Introduction
- Model problem and discretization
- A first POD reduced model
- A structure preserving POD reduced model
- Numerical experiments
- 6 Conclusion

Conclusion and perspectives

Conclusion

 We constructed an efficient reduced model preserving the physical properties of the cross-diffusion system.

Perspectives

- Construct a reduced basis method with a posteriori estimators for high accuracy.
- EIM algorithm to reduce the computational time.