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Motivation
Study a simplified mathematical model for the storage of radioactive waste

Potential serious environmental hazard. Need for accurate simulation.

Quantify the error, propose robust algorithms, and save computational time.


∂t lw(Sl) +∇ ·Φw(Sl,P l, χl

h) = Qw

∂t lh(Sl, χl
h) +∇ ·Φh(Sl,P l, χl

h) = Qh
K(Sl) ≥ 0, G(Sl,P l, χl

h) ≥ 0, K(Sl) · G(Sl,P l, χl
h) = 0

System of coupled partial differential equations, unsteady problem, strongly
nonlinear and degenerate problem, heterogeneous data, phase change: nonlinear
complementarity constraints

We study 3 problems of increasing difficulty.
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Motivation

Consider the system of PDEs with nonlinear complementarity constraints:

∂t (ϕ(u)) +A(u) = F
K(u) ≥ 0 G(u) ≥ 0 K(u) · G(u) = 0

This model is used in various physical phenomena: economy, fluid mechanics, elasticity,
multiphase flow.
Numerical resolution:

Discretization: Finite elements / finite volumes + backward Euler scheme in time

ϕ(un
h)− ϕ(un−1

h )

tn − tn−1 +A(un
h) = Fn−1

h

K(un
h) ≥ 0 G(un

h) ≥ 0 K(un
h) · G(un

h) = 0

Nonlinear resolution: semismooth Newton algorithm

An,k−1Un,k
h = F n,k−1
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Motivation

A posteriori error estimate:∣∣∣∥∥∥u − un,k ,i
h

∥∥∥∣∣∣ ≤ η(un,k ,i
h ) where |‖·‖| is some norm

Three components of the error:
discretization error: numerical scheme (finite elements, finite volumes...) (h, τ )
linearization error: semismooth Newton method (k )
algebraic error: iterative algebraic solver (i)

Questions:
Can we distinguish each component of the error? yes!∣∣∣∥∥∥u − un,k ,i

h

∥∥∥∣∣∣ ≤ ηn,k ,i
disc + ηn,k ,i

lin + ηn,k ,i
alg

Can we reduce the number of iterations? yes!
Adaptive stopping criterion: semismooth linearization: ηn,k ,i

lin ≤ γlinη
n,k ,i
disc

Adaptive stopping criterion: algebraic: ηn,k ,i
alg ≤ γalg

{
ηn,k ,i

disc , η
n,k ,i
lin

}
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Chapter 1: Stationary linear variational inequality

Find u ∈ Kg a(u,v − u) ≥ (f ,v − u) ∀v ∈ Kg
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Chapter 2: Parabolic linear variational inequality

Find u ∈ Kt
g 〈∂tu,v − u〉+ a(u,v − u) ≥ (f ,v − u) ∀v ∈ Kt

g
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Chapter 3: Two-phase compositional flow with phase change

Find Sl,P l, χl
h


∂t lw(Sl) +∇ ·Φw(Sl,P l, χl

h) = Qw,

∂t lh(Sl, χl
h) +∇ ·Φh(Sl,P l, χl

h) = Qh,
K(Sl) ≥ 0, G(Sl,P l, χl

h) ≥ 0, K(Sl) · G(Sl,P l, χl
h) = 0
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Model problem and settings: contact between two membranes

Find u1,u2, λ such that


−µ1∆u1 − λ = f1 in Ω,
−µ2∆u2 + λ = f2 in Ω,
u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in Ω,
u1 = g > 0 on ∂Ω,
u2 = 0 on ∂Ω.

u1 λ

u2
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Continuous problem

H1
g (Ω)=

{
u ∈ H1(Ω), u = g on ∂Ω

}
Λ =

{
χ ∈ L2(Ω), χ ≥ 0 a.e. in Ω

}
Saddle point type weak formulation: For (f1, f2) ∈

[
L2(Ω)

]2 and g > 0 find
(u1,u2, λ) ∈ H1

g (Ω)× H1
0 (Ω)× Λ such that

2∑
α=1

µα (∇uα,∇vα)Ω − (λ, v1 − v2)Ω =
2∑

α=1

(fα, vα)Ω ∀(v1, v2) ∈
[
H1

0 (Ω)
]2

(χ− λ,u1 − u2)Ω ≥ 0 ∀χ ∈ Λ

(S)

equivalent to
Variational inequality:
Kg =

{
(v1, v2) ∈ H1

g (Ω)× H1
0 (Ω), v1 − v2 ≥ 0 a.e. in Ω

}
convex

Find u = (u1,u2) ∈ Kg s.t.
2∑

α=1

µα (∇uα,∇ (vα − uα))Ω ≥
2∑

α=1

(fα, vα − uα)Ω ∀v ∈ Kg (R)
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Discretization by finite elements

For any p ≥ 1
Spaces for the discretization:
X p

gh =
{

vh ∈ C0(Ω), vh|K ∈ Pp(K ), ∀K ∈ Th, vh = g on ∂Ω
}

X p
0h =

{
vh ∈ C0(Ω); vh|K ∈ Pp(K ), ∀K ∈ Th, vh = 0 on ∂Ω

}
Kp

gh =
{

(v1h, v2h) ∈ X p
gh × X p

0h, v1h(xl)− v2h(xl) ≥ 0 ∀xl ∈ Vp
d

}
6⊂ Kg ∀p ≥ 2

Discrete variational inequality: find uh = (u1h,u2h) ∈ Kp
gh such that

2∑
α=1

µα (∇uαh,∇ (vαh − uαh))Ω ≥
2∑

α=1

(fα, vαh − uαh)Ω ∀vh = (v1h, v2h) ∈ Kp
gh (DR)

Well-posed problem (Lions–Stampacchia)
Resolution techniques: Projected Newton methods (Bertsekas 1982), Active set Newton method
(Kanzow 1999), Primal-dual active set strategy (Hintermüller 2002).
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Saddle point formulation

Recall Λ =
{
χ ∈ L2(Ω), χ ≥ 0 a.e. in Ω

}
p = 1: Λ1

h :=
{

vh ∈ X 1
0h vh(a) ≥ 0 ∀a ∈ V1,int

d

}
⊂ Λ Ben Belgacem, Bernardi, Blouza, and Vohralík (2012).

p ≥ 2 (new): Λp
h :=

{
vh ∈ X p

h

(
vh, ψh,xl

)
Ω
≥ 0 ∀xl ∈ Vp,int

d

(
vh, ψh,xl

)
Ω

= 0∀xl ∈ Vp,ext
d

}
6⊂ Λ

〈wh, vh〉h :=
∑
a∈Vh

wh(a)vh(a)
(
ψh,a,1

)
ωa

h
if p = 1 and 〈wh, vh〉h := (wh, vh)Ω if p ≥ 2
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Discrete weak formulation Find (u1h,u2h, λh) ∈ X p
gh × X p

0h × Λp
h s.t. ∀(z1h, z2h) ∈ [X p

0h]2

2∑
α=1

µα (∇uαh,∇zαh)Ω − 〈λh, z1h − z2h〉h =
2∑

α=1

(fα, zαh)Ω ,

〈χh − λh,u1h − u2h〉h ≥ 0 ∀χh ∈ Λp
h.

(DS)
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Discrete complementarity problems

2∑
α=1

µα (∇uαh,∇zαh)Ω − 〈λh, z1h − z2h〉h =
2∑

α=1

(fα, zαh)Ω ∀(z1h, z2h) ∈ [X p
0h]2,

(u1h − u2h) (xl) ≥ 0 ∀xl ∈ Vp,int
d ,

〈
λh, ψh,xl

〉
h ≥ 0 ∀xl ∈ Vp,int

d , 〈λh,u1h − u2h〉h = 0. (DS2)

Matrix representation of (DS2)

p ≥ 1: u1h =

N p,int
d∑

l=1

(X1h)l ψh,xl + g, u2h =

N p,int
d∑

l=1

(X2h)l ψh,xl λh =

N p,int
d∑

l=1

(X3h)l Θh,xl .

EXh = F ,
X1h + g1− X2h ≥ 0, X3h ≥ 0, (X1h + g1− X2h) · X3h = 0.

E :=

[
µ1S 0 −D
0 µ2S +D

]
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EXh = F ,
X1h + g1− X2h ≥ 0, X3h ≥ 0, (X1h + g1− X2h) · X3h = 0.

E :=

[
µ1S 0 −D
0 µ2S +D

]
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Discrete complementarity problems
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Resolution
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C-functions

Definition

f : (Rm)2 → R
m (m ≥ 1) is a C-function or a complementarity function if

∀(x ,y) ∈ (Rm)
2 f (x ,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x ·y = 0.

min function: (min{x ,y})l := min {xl ,yl} l = 1, . . . ,m

Fischer–Burmeister function: (fFB(x ,y))l :=
√

x2
l + y2

l − (xl + yl) l = 1, . . . ,m

x = X1h + g1− X2h, y = X3h (m = N p,int
d ), C(Xh) = C̃(X1h + g1− X2h,X3h).{

EXh = F ,
C(Xh) = 0.

The C-function is not Fréchet differentiable.

We will use semismooth Newton algorithms.
Facchinei and Pang (2003), Bonnans, Gilbert, Lemaréchal, and Sagastizábal (2006).
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Inexact semismooth Newton method

Newton initial vector: X 0
h :=

(
X 0

1h,X
0
2h,X

0
3h

)T ∈ R3N p,int
d , on step k ≥ 1, one looks for

X k
h ∈ R3N p,int

d such that
Ak−1X k

h = Bk−1,

where

Ak−1 :=

[
E

JC(X k−1
h )

]
, Bk−1 :=

[
F

JC(X k−1
h )X k−1

h − C(X k−1
h )

]
.
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E

JC(X k−1
h )

]
, Bk−1 :=

[
F

JC(X k−1
h )X k−1

h − C(X k−1
h )

]
.

Inexact solver initial vector: X k ,0
h ∈ R3N p,int

d , often taken as X k ,0
h = X k−1

h , this yields on
step i ≥ 1 an approximation X k ,i

h to X k
h satisfying

Ak−1X k ,i
h = Bk−1 − Rk ,i

h ,

where Rk ,i
h ∈ R

3N p,int
d is the algebraic residual vector.
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Inexact semismooth Newton method

A posteriori error estimates
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A posteriori analysis

∣∣∣∥∥∥u − uk ,i
h

∥∥∥∣∣∣
Ω

:=

(
2∑

α=1

µα

∥∥∥∇(uα − uk ,i
αh

)∥∥∥2

Ω

) 1
2

≤ ηk ,i :=

(∑
K∈Th

[
ηK (uk ,i

h )
]2
) 1

2

ηK (uk ,i
h ) local estimator depending on the approximate solution

ηk ,i ≤ ηk ,i
disc + ηk ,i

lin + ηk ,i
alg: identification of the error components

ηK (uk ,i
h ) ≤ local error + local contact term︸ ︷︷ ︸

typically very small

: local efficiency

adaptive inexact stopping criteria based on the error components

We employ the methodology of equilibrated flux reconstruction to obtain local error
estimators.
Destuynder & Métivet (1999) Braess & Schöberl (2008), Ern & Vohralík (2013)
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Component flux reconstruction

Motivation:

−µα∇uα ∈ H(div,Ω), −µα∇uk ,i
αh 6∈ H(div,Ω), ∇·

(
−µα∇uk ,i

αh

)
6= fα − (−1)αλk ,i

h

Flux reconstruction:

σk ,i
αh ∈ H(div,Ω)

(
∇·σk ,i

αh,1
)

K
=
(

fα − (−1)αλk ,i
h ,1

)
K

Decomposition of the flux:
σk ,i
αh = σk ,i

αh,alg + σk ,i
αh,disc

Algebraic error flux reconstruction:

σk ,i
αh,alg ∈ H(div,Ω) ∇·σk ,i

αh,alg = r k ,i
αh where r k ,i

αh is the functional representation of Rk ,i
αh

Papež, Rüde, Vohralík and Wohlmuth (2017).

Discretization flux reconstruction:

σk ,i
αh,disc ∈ H(div,Ω)

(
∇·σk ,i

αh,disc,1
)

K
=
(

fα − (−1)αλk ,i
h − r k ,i

αh ,1
)

K
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Estimators

Violations of physical properties of the numerical solution

σk ,i
αh 6= −∇uk ,i

αh, ∇·σk ,i
αh 6= fα − (−1)αλk ,i

h

Flux estimator:
ηk ,i

F,K ,α :=

∥∥∥∥µ 1
2
α∇uk ,i

αh + µ
− 1

2
α σk ,i

αh

∥∥∥∥
K
,

Residual estimator:

ηk ,i
R,K ,α :=

hK

π
µ
− 1

2
α

∥∥∥fα −∇·σk ,i
αh − (−1)αλk ,i

h

∥∥∥
K
,
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Violations of the complementarity constraints

p = 1: at convergence:
(u1h−u2h)(a)≥0⇒uh ∈Kg , λh(a)≥0⇒λh ∈Λ, λh(a)·(u1h−u2h)(a) = 06⇒λh ·(u1h−u2h) = 0

p = 1: at each inexact semismooth step:

(uk ,i
1h − uk ,i

2h )(a) 6≥ 0 λk ,i
h (a) 6≥ 0 λk ,i

h (a) · (uk ,i
1h − uk ,i

2h )(a) 6= 0 ∀a ∈ V int
h

p ≥ 2: at convergence:
(u1h − u2h)(xl) ≥ 0 6⇒ uh ∈ Kg ,

(
λh, ψh,xl

)
Ω
≥ 0 6⇒ λh ∈ Λ

(λh,u1h − u2h)Ω = 0 6⇒ λh · (u1h − u2h) = 0

p ≥ 2: at each inexact semismooth step:

(uk ,i
1h − uk ,i

2h )(xl) 6≥ 0 ,
(
λk ,i

h , ψh,xl

)
Ω
6≥ 0 ∀xl ∈ Vp,int

d

(
λk ,i

h ,uk ,i
1h − uk ,i

2h

)
Ω
6= 0

Contact estimator:
ηk ,i

C,K := 2
(
λ

k ,i,pos
h ,uk ,i

1h − uk ,i
2h

)
K
,

Nonconformity estimators: We construct K̃
p
gh ⊂ Kg , λk ,i

h =λ
k ,i,pos
h +λk ,i,neg

h ⇒ 3 estimators.
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d

(
λk ,i

h ,uk ,i
1h − uk ,i

2h
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Ω
6= 0

Contact estimator:
ηk ,i

C,K := 2
(
λ

k ,i,pos
h ,uk ,i

1h − uk ,i
2h

)
K
,

Nonconformity estimators: We construct K̃
p
gh ⊂ Kg , λk ,i

h =λ
k ,i,pos
h +λk ,i,neg

h ⇒ 3 estimators.
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Theorem (A posteriori error estimate)

∣∣∣∥∥∥u − uk ,i
h

∥∥∥∣∣∣ ≤


∑

K∈Th

2∑
α=1

(
ηk ,i

F,K ,α+ηk ,i
R,K ,α

)2

 1
2

+ηk ,i
nonc,1 + ηk ,i

nonc,2


2

+ηk ,i
nonc,3 +

∑
K∈Th

η
k ,i,pos
C,K


1
2

Corollary (Distinction of the error components)∣∣∣∥∥∥u − uk ,i
h

∥∥∥∣∣∣ ≤ ηk ,i
disc + ηk ,i

lin + ηk ,i
alg

Adaptive algorithm

If ηk ,i
alg ≤ γalg max

{
ηk ,i

disc, η
k ,i
lin

}
Stop linear solver

If ηk ,i
lin ≤ γlinη

n,k ,i
disc

Stop nonlinear solver

Theorem (Local efficiency under adaptive stopping criteria : p=1)

ηk ,i
disc,K .

∑
a∈Vh

(∥∥∥∇(uα−uk ,i
αh

)∥∥∥
ωa

h

+
∣∣∣∥∥∥λ−λk ,i

h (a)
∥∥∥∣∣∣

H−1
∗ (ωa

h )

)
+ contact term
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Numerical experiments

semismooth solver: Newton-min. Linear solver: GMRES with ILU preconditionner.

Exact Newton
(
∥∥∥Rk,i

rel,alg

∥∥∥ ≤ 10−12,
∥∥∥Rk,i

rel,lin

∥∥∥ ≤ 10−10)
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Inexact Newton
(
∥∥∥Rk,i

rel,alg

∥∥∥ ≤ ∥∥∥Rk,i
rel,lin

∥∥∥,
∥∥∥Rk,i

rel,lin

∥∥∥ ≤ 10−10)
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Adaptive Inexact Newton
(γlin = 10−1, γalg = 10−1)
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Precision is preserved for adaptive inexact semismooth Newton method.
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Adaptivity

Exact Newton/Adaptive inexact Newton

0 50 100 150 200 250

Algebraic iteration

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
s
ti
m

a
to

rs

total estimator

discretization estimator

linearization estimator

algebraic estimator

adaptive stopping criterion

classical stopping criterion

0 5 10 15

Newton iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
s
ti
m

a
to

rs

total estimator

discretization estimator

linearization estimator

algebraic estimator
Classical stopping

criterion

Adaptive

stopping criterion

21 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Overall performance
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Effectivity indices: Ieff := ηk,i∣∣∣∥∥∥u−uk,i
h

∥∥∥∣∣∣
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Parabolic model problem with linear complementarity constraints



∂tu1 − µ1∆u1 − λ = f1 in Ω× ]0,T [ ,
∂tu2 − µ2∆u2 + λ = f2 in Ω× ]0,T [ ,
u1 − u2 ≥ 0, λ ≥ 0, λ(u1 − u2) = 0 in Ω× ]0,T [ ,
u1 = g on ∂Ω× ]0,T [ ,
u2 = 0 on ∂Ω× ]0,T [ ,
u1(x ,0) = u0

1(x), u2(x ,0) = u0
2(x), u0

1(x)− u0
2(x) ≥ 0 in Ω.

Two possibilities to characterize the weak solution

Recall Λ =
{
χ ∈ L2(Ω), χ ≥ 0 a.e. in Ω

}
Saddle point formulation (u1,u2, λ) ∈ L2(0,T ; H1

g (Ω))× L2(0,T ; H1
0 (Ω))× L2(0,T ; Λ)

Parabolic variational inequality: u ∈ Kt
g

Kt
g :=

{
v ∈ L2(0,T ; H1

g (Ω))× L2(0,T ; H1
0 (Ω)), v(t) ∈ Kg a.e in ]0,T [

}
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Discrete complementarity problems

n ≥ 1, p ≥ 1:

EnX n
h = F n,

X n
1h +g1−X n

2h ≥ 0 X n
3h ≥ 0 (X n

1h +g1−X n
2h) ·X n

3h = 0.
En :=

[
µ1S+ 1

∆tn M 0 −D
0 µ2S+ 1

∆tn M +D

]

Employing a C-function our problem reads{
EnX n

h = F n,
C(X n

h ) = 0.

Inexact semismooth Newton method:

An,k−1X n,k ,i
h = Bn,k−1 − Rn,k ,i

h
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A posteriori error estimates
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A posteriori analysis

We employ the methodology of equilibrated flux reconstructions

Theorem (Guaranteed upper bound)

∀p ≥ 1, ∀k ≥ 0, ∀i ≥ 0,
∣∣∣∥∥∥u − uk ,i

hτ

∥∥∥∣∣∣
L2(0,T ;H1

0 (Ω))
≤ ηk ,i

Corollary (Distinction of the error components)∣∣∣∥∥∥u − uk ,i
hτ

∥∥∥∣∣∣
L2(0,T ;H1

0 (Ω))
≤ ηk ,i

disc + ηk ,i
lin + ηk ,i

alg + ηinit
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A posteriori error at convergence for p = 1

Theorem (Guaranteed upper bound)

|‖u − uhτ‖|2L2(0,T ;H1
0 (Ω)) + |‖u − z‖|2L2(0,T ;H1

0 (Ω)) + ‖(u − uhτ ) (·,T )‖2Ω ≤ 5η2

η2 :=
Nt∑

n=1

∫
In

∑
K∈Th

(
2∑

α=1

(
ηn

R,K ,α + ηn
F,K ,α

)2
+ ηn

C,K

)
(t) dt + ‖(u − uhτ ) (·,0)‖2Ω .

Auxiliary problem: Given u ∈ Kt
g and uhτ ∈ Kt

g , let z ∈ Kt
g be such that ∀v ∈ Kt

g∫ T

0
a(z − u,v − z)(t) dt ≥ −

∫ T

0

2∑
α=1

〈∂t (uα − uαhτ )− (−1)αλhτ , vα − zα〉 (t) dt

Lemma

|‖u − z‖|L2(0,T ;H1
0 (Ω)) .

(∫ T

0

2∑
α=1

‖∂t (uα−uαhτ )‖2H−1(Ω) (t) dt

) 1
2

+

(∫ T

0
‖λhτ−λ‖2H−1(Ω) (t) dt

) 1
2
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g be such that ∀v ∈ Kt

g∫ T

0
a(z − u,v − z)(t) dt ≥ −

∫ T

0

2∑
α=1

〈∂t (uα − uαhτ )− (−1)αλhτ , vα − zα〉 (t) dt

Lemma

|‖u − z‖|L2(0,T ;H1
0 (Ω)) .

(∫ T

0

2∑
α=1

‖∂t (uα−uαhτ )‖2H−1(Ω) (t) dt

) 1
2

+

(∫ T

0
‖λhτ−λ‖2H−1(Ω) (t) dt

) 1
2
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A posteriori error at convergence for p = 1

Theorem (Guaranteed upper bound)

|‖u − uhτ‖|2L2(0,T ;H1
0 (Ω)) + |‖u − z‖|2L2(0,T ;H1

0 (Ω)) + ‖(u − uhτ ) (·,T )‖2Ω ≤ 5η2

η2 :=
Nt∑

n=1

∫
In

∑
K∈Th

(
2∑

α=1

(
ηn

R,K ,α + ηn
F,K ,α

)2
+ ηn

C,K

)
(t) dt + ‖(u − uhτ ) (·,0)‖2Ω .

Auxiliary problem: Given u ∈ Kt
g and uhτ ∈ Kt

g , let z ∈ Kt
g be such that ∀v ∈ Kt

g∫ T

0
a(z − u,v − z)(t) dt ≥ −

∫ T

0

2∑
α=1

〈∂t (uα − uαhτ )− (−1)αλhτ , vα − zα〉 (t) dt

Lemma

|‖u − z‖|L2(0,T ;H1
0 (Ω)) .

(∫ T

0

2∑
α=1

‖∂t (uα−uαhτ )‖2H−1(Ω) (t) dt

) 1
2

+

(∫ T

0
‖λhτ−λ‖2H−1(Ω) (t) dt

) 1
2

27 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments

27 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Numerical experiments p = 1

semismooth solver: Newton–Fischer–Burmeister
iterative algebraic solver : GMRES with ILU preconditionner

28 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Newton–Fischer–Burmeister adaptivity
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Newton–Fischer–Burmeister performance

0 50 100 150 200 250 300
Time

0

500

1000

1500

2000

2500

3000

C
u
m

u
la

te
d
 n

u
m

b
e
r 

o
f 
N

e
w

to
n
-F

is
c
h
e
r-

B
u
rm

e
is

te
r 

it
e
ra

ti
o
n
s

exact Newton Fischer-Burmeister

adaptive inexact Newton-Fischer-Burmeister

0 50 100 150 200 250 300

Time

0

0.5

1

1.5

2

2.5

3

3.5

C
u

m
u

la
te

d
 n

u
m

b
e

r 
o

f 
G

M
R

E
S

 i
te

ra
ti
o

n
s

10 4

exact Newton Fischer-Burmeister

adaptive inexact Newton-Fischer-Burmeister

30 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Outline

1 Introduction

2 Stationary variational inequality

3 Parabolic variational inequality

4 Two-phase flow with phase appearance and disappearance

5 Conclusion and perspectives

30 / 42



Introduction Stationary variational inequality Parabolic variational inequality Two-phase flow with phase appearance and disappearance Conclusion and perspectives

Two-phase flow with phase appearance and disappearance


∂t lw(Sl) +∇ ·Φw(Sl,P l, χl

h) = Qw,

∂t lh(Sl,P l, χl
h) +∇ ·Φh(Sl,P l, χl

h) = Qh,
1− Sl ≥ 0, H

[
P l + Pcp(Sl)

]
− βlχ

l
h ≥ 0,

[
1− Sl

]
·
[
H
[
P l + Pcp(Sl)

]
− βlχ

l
h

]
= 0

Unknowns: liquid saturation Sl, liquid pressure P l, mole fraction of liquid hydrogen χl
h

Linear functions: amount of water lw, amount of hydrogen lh

Nonlinear function: capillary pressure Pcp

Nonlinear fluxes: water flux Φw︸︷︷︸
Darcy+Fick

, hydrogen flux Φh︸︷︷︸
Darcy+Fick

Nonlinear complementarity constraints: ⇒ Phase change
Ben Gharbia and Jaffré (2014)
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Discretization by the finite volume method

Numerical solution:

Un := (Un
K )K∈Th , Un

K := (Sn
K ,P

n
K , χ

n
K ) one value per cell and time step

Discretization of the water equation

Sn
w,K (Un) := |K |∂n

t lw,K +
∑
σ∈EK

Fw,K ,σ(Un)− |K |Qn
w,K = 0,

Discretization of the hydrogen equation

Sn
h,K (Un) := |K |∂n

t lh,K +
∑
σ∈EK

Fh,K ,σ(Un)− |K |Qn
h,K = 0,

At each time step tn, we obtain the nonlinear system of algebraic equations

Sn
c,K (Un) = 0 ∀K ∈ Th ∀c ∈ {w, h}
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Discrete complementarity problem and semismoothness

Discretization of the nonlinear complementarity constraints

K(Un
K ) := 1− Sn

K G(Un
K ) := H(Pn

K +Pcp(Sn
K ))− βlχn

K

The discretization reads

Sn
c,K (Un) = 0 ∀K ∈ Th ∀c ∈ {w, h}
K(Un

K ) ≥ 0, G(Un
K ) ≥ 0, K(Un

K ) · G(Un
K ) = 0 ∀K ∈ Th

We reformulate the complementarity constraints with C-functions
We employ inexact semismooth linearization
Can we estimate the error?
Can we distinguish the error components?
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A posteriori error estimates
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Weak solution

X := L2((0, tF); H1(Ω)), Y := H1((0, tF); L2(Ω)), Z := L2
+((0, tF); L∞(Ω))

Assumption: There exists a unique weak solution satisfying
1− Sl ∈ Z , lc ∈ Y , P l ∈ X , χl

h ∈ X , Φc ∈ L2((0, tF); H(div,Ω))∫ tF

0
(∂t lc , ϕ)Ω (t) dt−

∫ tF

0
(Φc ,∇ϕ)Ω (t) dt =

∫ tF

0
(Qc , ϕ)Ω (t) dt ∀ϕ ∈ X∫ tF

0

(
λ−

(
1− Sl) ,H[P l + Pcp(Sl)]− βlχl

h
)

Ω
(t) dt ≥ 0 ∀λ ∈ Z

the initial condition holds
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Error measure
1 Dual norm of the residual for the components∥∥∥Rc(Sn,k ,i

hτ ,Pn,k ,i
hτ , χn,k ,i

hτ )
∥∥∥

X ′n
:= sup

ϕ∈Xn
‖ϕ‖Xn =1

∫
In

(
Qc − ∂t l

n,k ,i
c,hτ , ϕ

)
Ω

(t) +
(
Φn,k ,i

c,hτ ,∇ϕ
)

Ω
(t) dt

2 Residual for the constraints

Re(Sn,k ,i
hτ ,Pn,k ,i

hτ , χn,k ,i
hτ ) :=

∫
In

(
1− Sn,k ,i

hτ ,H
[
Pn,k ,i

hτ + Pcp(Sn,k ,i
hτ )

]
− βlχn,k ,i

hτ

)
Ω

(t) dt

3 Error measure for the nonconformity of the pressure Np(Pn,k ,i
hτ )

4 Error measure for nonconformity of the molar fraction Nχ(χn,k ,i
hτ )

N n,k ,i :=

{∑
c∈C

∥∥∥Rc(Sn,k ,i
hτ ,Pn,k ,i

hτ , χn,k ,i
hτ )

∥∥∥2

X ′n

} 1
2

+

∑
p∈P
N 2

p +N 2
χ


1
2

+Re(Sn,k ,i
hτ ,Pn,k ,i

hτ , χn,k ,i
hτ )
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{∑
c∈C

∥∥∥Rc(Sn,k ,i
hτ ,Pn,k ,i

hτ , χn,k ,i
hτ )

∥∥∥2

X ′n

} 1
2

+

∑
p∈P
N 2

p +N 2
χ


1
2

+Re(Sn,k ,i
hτ ,Pn,k ,i

hτ , χn,k ,i
hτ )
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A posteriori error estimate distinguishing the error components

Theorem

N n,k ,i ≤ ηn,k ,i
disc + ηn,k ,i

lin + ηn,k ,i
alg

Construction of the estimators:
Equilibrated component flux reconstruction in H(div,Ω)

Potential reconstruction in H1(Ω)
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Numerical experiments
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Numerical experiments

Ω: one-dimensional core with length L = 200m.

Semismooth solver: Newton-min

Iterative algebraic solver: GMRES.

Time step: ∆t = 5000 years,

Number of cells: Nsp = 1000,

Final simulation time: tF = 5× 105 years.
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Phase transition estimator

t = 2500 years
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Phase transition estimator

t = 1.25 × 104 years
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Phase transition estimator

t = 4.25 × 104 years
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Overall performance γlin = γalg = 10−3
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Accuracy γlin = γalg = 10−3

t = 1.05× 105 years t = 3.5× 105 years
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Outline

1 Introduction

2 Stationary variational inequality

3 Parabolic variational inequality

4 Two-phase flow with phase appearance and disappearance

5 Conclusion and perspectives
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Conclusion and perspectives

Conclusion

Variational inequality: we devised a posteriori error estimates with Pp finite elements.
Two-phase flow with phase transition: a posteriori error estimates for a cell centered
finite volume discretization.
Formulations with complementarity constraints and semismooth algorithms.
We distinguished the different error components.
Adaptive stopping criteria⇒ reduction of the number of iterations.

Perspectives
Extension of the stationary contact problem to a hyperbolic contact problem between
two vibrating membranes
Devise a proof for the convergence of the semismooth Newton scheme
Chapter 2: Improve the time derivative a posteriori error
Construct a posteriori error estimates for a multiphase multi compositional flow with
several phase transitions.
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Discretization flux reconstruction:(
σk ,i,a
αh,disc, τh

)
ωa

h

−
(
γk ,i,a
αh ,∇·τh

)
ωa

h

= −
(
µαψh,a∇uk ,i,a

αh , τh

)
ωa

h

∀τh ∈ Va
h,(

∇·σk ,i,a
αh,disc,qh

)
ωa

h

=
(

g̃k ,i,a
αh ,qh

)
ωa

h

∀qh ∈ Qa
h ,

g̃k ,i,a
αh :=

(
fα − (−1)αλ̃k ,i

h,a − r k ,i
αh

)
ψh,a − µα∇uk ,i

αh·∇ψh,a : depends on the residual

For each internal vertex a ∈ V int
h

Va
h :=

{
τh ∈ RTp(ωa

h), τh·nωa
h

= 0 on ∂ωa
h

}
Qa

h := P0
p(ωa

h)

σk ,i
αh,disc :=

∑
a∈Vh

σk ,i,a
αh,disc
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Strategy for constructing the estimators

λk ,i
h := λ

k ,i,pos
h + λ

k ,i,neg
h , K̃

p
gh :=

{
(v1h, v2h) ∈ X p

gh × X p
0h, v1h − v2h ≥ 0

}
⊂ Kg .

Nonconformity estimator 1:

ηk ,i
nonc,1,K :=

∣∣∣∥∥∥sk ,i
h − uk ,i

h

∥∥∥∣∣∣
K
,

Nonconformity estimator 2:

ηk ,i
nonc,2,K := hΩCPF

(
1
µ1

+
1
µ2

) 1
2 ∥∥∥λk ,i,neg

h

∥∥∥
K
,

Nonconformity estimator 3:

ηk ,i
nonc,3,K := 2hΩCPF

(
1
µ1

+
1
µ2

) 1
2 ∥∥∥λk ,i,pos

h

∥∥∥
Ω

∣∣∣∥∥∥sk ,i
h − uk ,i

h

∥∥∥∣∣∣
K
.
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Parabolic weak formulation

Weak formulation: For (f1, f2) ∈ [L2(0,T ; L2(Ω))]2, u0 ∈ H1
g (Ω) × H1

0 (Ω), find
(u1,u2, λ) ∈ L2(0,T ; H1

g (Ω))× L2(0,T ; H1
0 (Ω))× L2(0,T ; Λ) s.t. ∂tuα ∈ L2(0,T ; H−1(Ω)), and

satisfying ∀t ∈ ]0,T [

2∑
α=1

〈∂tuα(t), vα〉+
2∑

α=1

µα (∇uα(t),∇vα)Ω − (λ(t), v1 − v2)Ω =
2∑

α=1

(fα, vα)Ω , ∀v ∈
[
H1

0 (Ω)
]2

(χ− λ(t),u1(t)− u2(t))Ω ≥ 0 ∀χ ∈ Λ.

Discrete formulation: Given
(
u0

1h,u
0
2h

)
∈ Kp

gh, search (un
1h,u

n
2h, λ

n
h) ∈ X p

gh × X p
0h × Λp

h such
that for all (z1h, z2h, χh) ∈ X p

0h × X p
0h × Λp

h

1
∆tn

2∑
α=1

(
un
αh − un−1

αh , zαh

)
Ω

+
2∑

α=1

µα (∇un
αh,∇zαh)Ω − 〈λ

n
h, z1h − z2h〉h =

2∑
α=1

(fα, zαh)Ω ,〈
χh − λn

h,u
n
1h − un

2h
〉

h ≥ 0
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Post-processing

The discrete liquid pressure and discrete molar fraction are piecewise constant(
Pn,k ,i

K

)
K∈Th

∈ P0(Th)
(
χn,k ,i

K

)
K∈Th

∈ P0(Th)

Piecewise polynomial reconstruction:

Pn,k ,i
h ∈ P2(Th), χn,k ,i

h ∈ P2(Th)

Conforming reconstruction:

P̃n,k ,i
h ∈ P2(Th) ∩ H1(Ω), χ̃n,k ,i

h ∈ P2(Th) ∩ H1(Ω).
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γlin = γalg = 10−6

t = 1.05× 105 years t = 3.5× 105 years
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